Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Several notes on the elastic properties of mesoporous materials

A.V. Shishulin1, A.V. Shishulina2

1 Pleiades Publ., Ltd.
2 R.E. Alekseev Nizhny Novgorod State Technical University

DOI: 10.26456/pcascnn/2023.15.308

Short communication

Abstract: In this paper, the dependence of the Young’s elastic modulus of a mesoporous material on the geometric characteristics (volume and shape) of pores has been analyzed. The geometric characteristics of pores have been determined in the framework of the fractal-geometry approach by the values of their effective diameter and fractal dimension. The presented estimates demonstrate that the effect (being characteristic of nanoscale particles), which consists a significant dependence of elastic moduli on the size and shape of a particle, can also be realized in mesoporous materials (the pore size being form 5 up to 50 nm) while the mesoporous samples themselves can be of macroscopic dimensions. Using the example of mesoporous silver, it has been shown that reducing the pore size and «complicating» the pore shape lead to a significant decrease in the Young’s elastic modulus. The results have been obtained in the framework of the cohesive energy-based model.

Keywords: elastic modulus, mesoporous materials, fractal dimension, cohesion, size distributions, Hardy-Ramanujan-Rademacher formula

  • Alexander V. Shishulin – Ph. D., Pleiades Publ., Ltd.
  • Anna V. Shishulina – Ph. D., Associate Professor, R.E. Alekseev Nizhny Novgorod State Technical University

Reference:

Shishulin, A.V. Several notes on the elastic properties of mesoporous materials / A.V. Shishulin, A.V. Shishulina // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 308-316. DOI: 10.26456/pcascnn/2023.15.308. (In Russian).

Full article (in Russian): download PDF file

References:

1. Andriyevskiy R.A. Ragulya A.V. Nanostrukturnyye materialy [Nanostructured materials]. Moscow, Akademiya Publ., 2005. 192 p.
2. Samsonov V.M., Sdobnyakov N.Yu., Talyzin I.V. et al. Complex approach to atomistic simulation of the size dependences of the temperature and the heat of melting of Co nanoparticles: molecular dynamics and MonteCarlo method, Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2019, vol. 13, issue 6, pp. 1185-1188. DOI: 10.1134/S1027451019060478.
3. Essajai R., Benhouria Y., Rachadi A. et al. Shape-dependent structural and magnetic properties of Fe nanoparticles studied through simulation methods, RSC Advances, 2019, vol. 9, issue 8, pp. 22057-22063. DOI: 10.1039/C9RA03047F.
4. Guisbiers G. Size-dependent material properties towards a universal equation, Nanoscale Research Letters, 2010, vol. 5, pp. 1132-1136. DOI: 10.1007/s11671-010-9614-1.
5. Goyal M. Shape, size and phonon scattering effect on the thermal conductivity of nanostructures, Pramana: Journal of Physics, 2018, vol. 91, issue 6, art. no. 87, 5 p. DOI: 10.1007/s12043-018-1660-8.
6. Shishulin A.V., Potapov A.A., Shishulina A.V. Several notes on the lattice thermal conductivity of fractalshaped nanoparticles, Eurasian Physical Technical Journal, 2022, vol. 19, issue 3(41), pp. 10-17. DOI: 10.31489/2022No3/10-17.
7. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [The study of thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer simulation: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
8. Magomedov M.N. Changes in the thermodynamic properties at isochoric and isobaric decrease of the silicon nanocrystal size, Physics of the Solid State, 2019, vol. 61, issue 4, pp. 642-649. DOI: 10.1134/S106378341904019X.
9. Goyal M., Gupta B.R.K. Study of shape, size and temperature-dependent elastic properties of nanomaterials, Modern Physics Letters B, 2019, vol. 33, issue 26, art. no. 1950310, 12 p. DOI: 10.1142/S021798491950310X.
10. Rawat K., Goyal M. Young’s modulus and vibrational frequency dependence on shape and size in nanomaterials, Materials Today: Proceedings, 2021, vol. 42, issue 4, pp. 1633-1637. DOI: 10.1016/j.matpr.2020.07.188.
11. Veresov S.A. Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles] Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (in Russian).
12. Shishulin A.V., Shishulina A.V. Nekotorye osobennosti vysokotemperaturnykh fazovykh ravnovesij v nanochastitsakh sistemy Six-Ge1-x [Several peculiarities of high-temperature phase equilibria in nanoparticles of the Six-Ge1-x system], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 268-276. DOI: 10.26456/pcascnn/2019.11.268. (in Russian).
13. Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining the melting behaviour of nanoparticles (a case study on Six-Ge1-x alloys), Eurasian Physical Technical Journal, 2021, vol. 18, issue 4(38), pp. 5-13. DOI: 10.31489/2021No4/5-13.
14. Shishulin A.V., Shishulina A.V. Ravnovesnyj fazovyj sostav i vzaimnaya rastvorimost' komponentov v nanochastitsakh fraktal'noj formy tyazhelogo psevdosplava W-Cr [Equilibrium phase composition and mutual solubilities in fractal nanoparticles of the W-Cr heavy pseudo-alloy], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 380-388. DOI: 10.26456/pcascnn/2019.11.380 (in Russian).
15. Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-x–Sbx nanostructures: alloy, janus or core-shell? Journal of Physical Chemistry C, 2020, vol. 124, issue 25, pp. 14061-14068. DOI: 10.1021/acs.jpcc.0c04356.
16. Shishulin A.V., Fedoseev V.B. On some peculiarities of stratification of liquid solutions within pores of fractal shape, Journal of Molecular Liquids, 2019, vol. 278, pp. 363-367. DOI: 10.1016/j.molliq.2019.01.050.
17. Shishulin A.V., Shishulina A.V. One more parameter determining the stratification of solutions in smallvolume droplets, Journal of Engineering Physics and Thermophysics, 2022, vol. 95, issue 6, pp. 1374-1382. DOI: 10.1007/s10891-022-02606-8.
18. Shishulin A.V., Fedoseev V.B., Shishulina A.V. Phonon thermal conductivity and phase equilibria of fractal Bi-Sb nanoparticles, Technical Physics, 2019, vol. 64, issue 4, pp. 512-517. DOI: 10.1134/S1063784219040200.
19. Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions: nanoscale effects on phase equilibria, thermal conductivity, thermoelectric performance, Springer Proceedings in Complexity, ed. by C.H. Skiadas, Y. Dimotikalis, Cham, Springer, 2022, pp. 421-432. DOI: 10.1007/978-3-030-96964-6_30.
20. Shishulin A.V., Fedoseev V.B., Shishulina A.V. Variation of the Curie temperature in porous materials, Technical Physics Letters, 2020, vol. 46, issue 7, pp. 680-682. DOI: 10.1134/S106378502007024X.
21. Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic states in mesoporous materials with fractal morphology, Eurasian Physical Technical Journal, 2021, vol. 18, issue 2 (36), pp. 6-11. DOI: 10.31489/2021NO2/6-11.
22. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
23. Anofriev V.A., Nizenko A.V., Ivanov D.V. et al. K probleme avtomatizatsii protsessa opredeleniya fraktal'noj razmernosti [To the problem of automation of the process of determination of the fractal dimension], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 264-276. DOI: 10.26456/pcascnn/2022.14.264 (in Russian).
24. Aqra F., Ayyad A. Surface free energy of alkali and transition metal nanoparticles, Applied Surface Science, 2014, vol. 324, pp. 308-313. DOI: 10.1016/j.apsusc.2014.07.004.
25. Attarian Shandiz M. Effective coordination number model for the size dependency of physical properties of nanocrystals, Journal of Physics: Condensed Matter, 2008, vol. 20, no. 32, art. no. 325237. 9 p. DOI: 10.1088/0953-8984/20/32/325237.
26. Gaev D.S., Rekhviashvili S.S. Kinetics of crack formation in porous silicon, Semiconductors, 2012, vol. 46, issue 2, pp. 137-140. DOI: 10.1134/S1063782612020108.
27. Błaszczyński T., Ślosarczyk A., Morawski M. Synthesis of silica aerogel by supercritical drying method, Procedia Engineering, 2013, vol. 57, pp. 200-206. DOI: 10.1016/j.proeng.2013.04.028.
28. Chae H.K., Siberio-Pérez D.Y., Kim J. et al. A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 2004, vol. 427, pp. 523-527. DOI: 10.1038/nature02311.
29. Magomedov M.N. Size dependence of elastic properties of argon nanocrystals, Physics of the Solid State, 2019, vol. 61, issue 1, pp. 23-29. DOI: 10.1134/S1063783419010165.
30. Bhatt J.C., Kholiya K. Effect of size on the elastic and thermodynamic properties of nanomaterials, Indian Journal of Pure & Applied Physics, 2014, vol. 52, pp. 604-608.
31. Chuvil’deev V.N., Nokhrin A.V., Kopylov V.I. et al. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti-5Al-2V alloy with high strength and corrosion resistance for nuclear engineering, Journal of Materials Science, 2019, vol. 54, issue 24, pp. 14926-14949. DOI: 10.1007/s10853-019-03926-6.
32. Fedoseev V.B. Vliyaniye temperatury i davleniya na fraktal’nuyu razmernost’ defektov kristallicheskoy struktury [Influence of the temperature and pressure on the fractal dimension of crystal structure defects], Butlerosvkiye soobscheniya [Butlerov Communications], 2010, vol. 23, issue 14, pp. 26-42 (in Russian).
33. Fedoseev V.B. Ispol'zovanie fraktal'noj geometrii pri termodinamicheskom opisanii trekhmernykh elementov kristallicheskoj struktury [The use of fractal geometry for the thermodynamic description of the thre-dimensional crystal structure elements], Pis’ma o materialakh [Letters on Materials], 2012, vol. 2, issue 2, pp. 78-83.
34. Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles, Technical Physics, 2021, vol. 66, issue 1, pp. 34-40. DOI: 10.1134/S1063784221010072.
35. Fedoseev V.B., Shishulin A.V. Corrigendum to paper «On the size distribution of dispersed fractal particles», Technical Physics, 2022, vol. 67, issue 4, pp. 643-644. DOI: 10.21883/JTF.2022.04.52255.pravka.

⇐ Prevoius journal article | Content | Next journal article ⇒