About the possibility of applying empirical methods of estimation of standard enthalpies of formation of organic compound for fullerenes
A.R. El Zanin1, S.V. Boroznin1, I.V. Zaporotskova1, N.P. Boroznina1, L.V. Kozhitov2, A.V. Popkova3
1 Volgograd State University
2 National University of Science and Technology «MISiS»
3 Research Institute of Scientific and Production Association«Luch»
DOI: 10.26456/pcascnn/2023.15.317
Original article
Abstract: Due to the high practical significance and, as a consequence, active study of carbon nanomaterials, the question of methods for investigating their physicochemical, in particular, thermodynamic properties is relevant. In the present work, several approaches are considered to estimate the standard enthalpy of formation of fullerenes in the gas phase. The standard enthalpies of formation of C60 and C70 fullerenes in the gas phase have been calculated using the Laidler, Franklin, Souders-Matthews-Hurd and Joback-Reid methods. A number of analytical dependences of the standard enthalpy of formation in the gas phase on the number of carbon atoms in fullerenes molecules were obtained. The obtained values were compared with experimental data and the relative error of calculation was determined. It is concluded that the proposed methods are limitedly applicable for determination of standard enthalpy of formation of fullerenes in the gas phase. The obtained values of the standard enthalpy of formation by the most satisfactory method from the considered ones for fullerenes C60 and C70 are 2448,90 and 2857,05 kJ/mol, and the relative errors are 4,44% and 5,95%, respectively. This is the Souders-Matthews-Hurd method. The presented analytical dependences allow for an express estimation of the standard enthalpy of formation of fullerenes in the gas phase with a small amount of input data.
Keywords: additive calculation schemes, carbon nanomaterials, thermodynamic properties
- Anton R. El Zanin – 4th year student, Laboratory Technician,Department of Forensic Examination and Physical Materials Science, Volgograd State University
- Sergey V. Boroznin – Dr.Sc., Docent, Head of the Department of Forensic Examination and Physical Materials Science, Volgograd State University
- Irina V. Zaporotskova – Dr.Sc., Professor, Director of the Priority Technologies Institute, Volgograd State University
- Natalya P. Boroznina – Dr.Sc., Professor, Department of Forensic Examination and Physical Materials Science, Volgograd State University
- Lev V. Kozhitov – Dr.Sc., Professor of the Department of Materials Technology of Electronics, National University of Science and Technology «MISiS»
- Alena V. Popkova – Employee, Research Institute of Scientific and Production Association«Luch»
Reference:
El Zanin, A.R. About the possibility of applying empirical methods of estimation of standard enthalpies of formation of organic compound for fullerenes / A.R. El Zanin, S.V. Boroznin, I.V. Zaporotskova, N.P. Boroznina, L.V. Kozhitov, A.V. Popkova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 317-327. DOI: 10.26456/pcascnn/2023.15.317. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kroto H.W., Heath J.R., O`Brien S.C. et al. C60: Buckminsterfullerene, Nature, 1985, vol. 318, pp. 162-163. DOI: 10.1038/318162a0
2. Neuman M.U., Srinivasan S.S., Phani A.R. et al. Nanomaterials for hydrogen storage applications: a review, Journal of Nanomaterials, 2008, vol. 2008, art. id. 950967, 9 p. DOI: 10.1155/2008/950967.
3. Oku T. Hydrogen storage in boron nitride and carbon nanomaterials, Energies, 2014, vol. 8, issue 1, pp. 319-337. DOI: 10.3390/en8010319
4. Wang Q., Sun Q., Jena P. et al. Theoretical study of hydrogen storage in Ca-coated fullerenes, Journal of Chemical Theory and Computation, 2009, vol. 5, issue 2, pp. 374-379. DOI: 10.1021/ct800373g
5. Anilkumar P., Lu F., Cao L. et al. Fullerenes for applications in biology and medicine, Current Medicinal Chemistry, 2011, vol. 18, issue 14, pp. 2045-2059. DOI: 10.2174/092986711795656225
6. Kumar M., Raza K. C60-fullerenes as drug delivery carriers for anticancer agents: promises and hurdles, Pharmaceutical Nanotechnology, 2017, vol. 5, issue 3, pp. 169-179. DOI: 10.2174/2211738505666170301142232.
7. Kazemzadeh H., Mozafari M. Fullerene-based delivery systems, Drug Discovery Today, 2019, vol. 24, issue 3, pp. 898-905. DOI: 10.1016/j.drudis.2019.01.013
8. Kian M., Tazikeh-Lemeski E. Adsorption behavior of aromasin onto C20 and C24 nano-cages: density functional theory study, Russian Journal of Inorganic Chemistry, 2020, vol. 65, issue 12, pp. 1848-1853. DOI: 10.1134/S0036023620120074.
9. Baran L.V. Annealing effect on the structure, phase composition, and nanohardness of titanium/fullerite films, Inorganic Materials, 2010, vol. 46, issue 8, pp. 824-832. DOI: 10.1134/S0020168510080042.
10. Baran L.V. Effect of metal content on the structure and phase composition of Fullerite-Sn films, Inorganic Materials, 2013, vol. 49, issue 3, pp. 257-265. DOI: 10.1134/S0020168513020015.
11. Baenitz M., Heinze M., Lüders K. et al. Superconductivity of Rb2CsC60: ac response and upper critical field, Solid State Communications, 1994, vol. 91, issue 5, pp. 337-340. DOI: 10.1016/0038-1098(94)90629-7.
12. Wang P., Metzger R.M., Bandow S. et al. Superconductivity in Langmuir-Blodgett multilayers of fullerene (C60) doped with potassium, Journal of Physical Chemistry, 1993, vol. 97, issue 12, pp. 2926-2927. DOI: 10.1021/j100114a016.
13. Rosseinsky M.J., Ramirez A.P., Glarum S.H. et al. Superconductivity at 28 K in RbxC60, Physical Review Letters, 1991, vol. 66, issue 21, p. 2830. DOI: 10.1103/PhysRevLett.66.2830.
14. Sidorov N.S., Palnichenko A.V., Rybchenko O.G. et al. Intercalation of C60 fullerene crystals with calcium and barium via self-propagating high-temperature synthesis, Inorganic Materials, 2010, vol. 46, issue 5, pp. 476-479. DOI: 10.1134/S0020168510050079.
15. Kalinkin A.N., Skorikov V.M. Calculation of the free energy of fullerenes in the Gross–Neveu model, Inorganic Materials, 2002, vol. 38, issue 3, pp. 212-215. DOI: 10.1023/A:1014706429759.
16. Yudina N.V., Sadykov N.R. Calculation of fullerene parameters by the implemented one-dimensional method for determination of eigenvalues and eigenfunctions in one-dimensional clusters of planar, cylindrical, and spherical geometry, Russian Journal of Inorganic Chemistry, 2019, vol. 64, issue 1, pp. 98-107. DOI: 10.1134/S0036023619010212.
17. Stolyarova V.L., Vorozhtcov V.A. The potential of the Wilson method in the calculation of the thermodynamic properties of oxide systems at high temperatures, Russian Journal of Inorganic Chemistry, 2021, vol. 66, issue 9, pp. 1396-1404. DOI: 10.1134/S0036023621090163.
18. Perevoshchikov A.V., Maksimov A.I., Babayan I.I. et al. Uravnenie sostoyaniya periklaza na osnove funktsii Planka–Ehinshteina [Equation of state of periclase based on Planck-Einstein functions], Zhurnal neorganicheskoi khimii [Russian Journal of Inorganic Chemistry], 2023, vol. 68, no. 2, pp. 191-202. DOI: 10.31857/S0044457X22601407. (In Russian).
19. Volokhov V.M., Zyubina T.S., Volokhov A.V. et al. Predictive modeling of molecules of high-energy heterocyclic compounds, Russian Journal of Inorganic Chemistry, 2021, vol. 66, issue 1, pp. 78-88. DOI: 10.1134/S0036023621010113.
20. Tupitsyn A.A., Bychinskii V.A., Shtenberg M.V. et al. Otsenka standartnoi ehntal'pii obrazovaniya kristallicheskikh boratov shchelochnykh metallov [Estimation of standard enthalpy of formation of crystalline borates of alkali metals], Zhurnal neorganicheskoi khimii [Russian Journal of Inorganic Chemistry], 2023, vol. 68, issue 3, pp. 325-332. DOI: 10.31857/S0044457X22601808. (In Russian).
21. Malyshkina M.V., Novikov A.S. Modern software for computer modeling in quantum chemistry and molecular dynamics, Compounds, 2021, vol. 1, issue 3, pp. 134-144. DOI: 10.3390/compounds1030012.
22. Chan B., Kawashima Y., Katouda M. et al. From C60 to infinity: large-scale quantum chemistry calculations of the heats of formation of higher fullerenes, Journal of the American Chemical Society, 2016, vol. 138, issue 4, pp. 1420-1429. DOI: 10.1021/jacs.5b12518.
23. Chan B. Fullerene thermochemical stability: accurate heats of formation for small fullerenes, the importance of structural deformation on reactivity, and the special stability of C60, Journal of Physical Chemistry A, 2020, vol. 124, issue 33, pp. 6688-6698. DOI: 10.1021/acs.jpca.0c04732.
24. Cioslowski J., Rao N., Moncrieff D. Standard enthalpies of formation of fullerenes and their dependence on structural motifs, Journal of the American Chemical Society, 2000, vol. 122, issue 34, pp. 8265-8270. DOI: 10.1021/ja001109+.
25. Kolesov V.P., Pimenova S.M., Pavlovich V.K. et al. Enthalpies of combustion and formation of fullerene C60, The Journal of Chemical Thermodynamics, 1996, vol. 28, issue 10, pp. 1121-1125. DOI: 10.1006/jcht.1996.0098.
26. Diogo H.P., da Piedade M.E.M., Dennis T.J.S. et al. Enthalpies of formation of buckminsterfullerene (C60) and of the parent ions C60+, C602+, C603+ and C60–, Journal of the Chemical Society, Faraday Transactions, 1993, vol. 89, issue 19, pp. 3541-3544. DOI: 10.1039/FT9938903541.
27. Beckhaus H.D., Rüchardt C., Kao M. et al. The stability of buckminsterfullerene (C60): experimental determination of the heat of formation, Angewandte Chemie, International Edition, 1992, vol. 31, issue 1. pp. 63-64. DOI: 10.1002/anie.199200631.
28. Beckhaus H.D., Verevkin S., Rüchardt C. et al. C70 is more stable than C60: experimental determination of the heat of formation of C70, Angewandte Chemie, International Edition, 1994, vol. 33, issue 9, pp. 996-998. https://doi.org/10.1002/anie.199409961.
29. Kiyobayashi T., Sakiyama M. Combustion calorimetric studies on C60 and C70, Fullerene Science and Technology, 1993, vol. 1, issue 3, pp. 269-273. DOI: 10.1080/15363839308011895.
30. Steele W.V., Chirico R.D., Smith N.K. et al. Standard enthalpy of formation of buckminsterfullerene, Journal of Physical Chemistry, 1992, vol. 96, issue 12, pp. 4731-4733. DOI: 10.1021/j100191a003.
31. Taylor R. Rationalisation of the most stable isomer of a fullerene Cn, Journal of the Chemical Society, Perkin Transactions 2, 1992, issue 1, pp. 3-4. DOI: 10.1039/P29920000003.
32. Bühl M., Hirsch A. Spherical aromaticity of fullerenes, Chemical Reviews, 2001, vol. 101, issue 5, pp. 1153-1184. DOI: 10.1021/cr990332q.
33. Amend J.P., Helgeson H.C. Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures, Geochimica et Cosmochimica Acta, 1997, vol. 61, issue 1, pp. 11-46. DOI: 10.1016/S0016-7037(96)00306-7.
34. Ivashkina E.N., Kazvini F.S. Termodinamicheskii analiz reaktsii polucheniya nizshikh olefinov v tekhnologii FCC na osnove ucheta funktsional'nykh grupp v molekulakh uglevodorodov i kvantovoi khimii [Thermodynamic analysis of fcc reactions based on functional groups in hydrocarbon molecules and quantum chemistry for production of light olefins], Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering], 2022, vol. 333, issue 11, pp. 101-114. DOI: 10.18799/24131830/2022/11/3774. (In Russian)
35. Pavlinov L.I., Marchenko G.N., Lebedev Y.A. Calculations of the thermodynamic properties of polymers, Russian Chemical Reviews, 1984, vol. 53, issue 7, pp. 683-696. DOI: 10.1070/RC1984v053n07ABEH003089.
36. Joback K.G., Reid R.C. Estimation of pure-component properties from group-contributions, Chemical Engineering Communications, 1987, vol. 57, issue 1-6, pp. 233-243. DOI: 10.1080/00986448708960487.
37. Kovalenko V.I., Khamatgalimov A.R. Regularities in the molecular structures of stable fullerenes, Russian Chemical Reviews, 2006, vol. 75, issue 11, pp. 981-988. DOI: 10.1070/RC2006v075n11ABEH003620.
38. NIST Chemistry WebBook: NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard, Gaithersburg MD, National Institute of Standards and Technology, 2023. Available at: https://webbook.nist.gov/chemistry (accessed 23.01.2023).