Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Primary nanocracks in nitrides, borides, and carbides of refractory metals

V.M. Yurov1, V.I. Goncharenko2, V.S. Oleshko2

1 Karaganda Technical University named after A. Saginov
2 Moscow Aviation Institute (National Research University)

DOI: 10.26456/pcascnn/2023.15.328

Original article

Abstract: A model is proposed that can be used to calculate the length of a nanocrack in a solid body. The nanocrack length in nitrides, borides, and carbides of refractory metals turned out to be in the range 1<L<3 nm. Theoretical and experimental methods for studying nanocracks are discussed. The theory gives a length interval 0<L<2 nm for silicon polycrystals. X-ray and electron microscopic methods give the thickness of cracks in the metal in the range of tenths and hundredths of a micron. The recently proposed method of fractoluminescence for the destruction of minerals with a duration of signals of about 50 ns, and the time interval between them varied from about 0,1 to 1 μs, made it possible to reveal nanocracks in oligoclase during the destruction of its surface in the range of 10<L<20 nm, which coincides with the one in proposed by us model. More examples of the formation of nanocracks in solids can be cited. In other words, we propose to call the direction of condensed matter physics «physics of nanocracks», which differs from the «theory of cracks» both in its experimental detection and in the method of its calculation.

Keywords: nanocrack, surface layer, metal, fracture, surface, model, micron

  • Viktor M. Yurov – Ph.D., Associate Professor, Deposits of minerals Department, Karaganda Technical University named after A. Saginov
  • Vladimir I. Goncharenko – Dr. Sc., Associate Professor, Director of the Military Institute MAI, Moscow Aviation Institute (National Research University)
  • Vladimir S. Oleshko – Ph. D., Associate Professor, Head of the Aircraft Department of the Military Institute MAI, Moscow Aviation Institute (National Research University)

Reference:

Yurov, V.M. Primary nanocracks in nitrides, borides, and carbides of refractory metals / V.M. Yurov, V.I. Goncharenko, V.S. Oleshko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 328-337. DOI: 10.26456/pcascnn/2023.15.328. (In Russian).

Full article (in Russian): download PDF file

References:

1. Panin V.E., Sergeev V.P., Panin A.V. Nanostrukturirovanie poverkhnostnykh sloev konstruktsionnykh materialov i nanesenie nanostrukturnykh pokrytij [Nanostructuring of surface layers of structural materials and application of nanostructural coatings]. Tomsk, TPU Publ., 2010, 254 p. (In Russian).
2. Malkin A.I., Popov D.A. The Rehbinder effect in fracturing of metals and rock, Physics of Metals and Metallography, 2022, V. 123, issue 12, pp. 1234-1244. DOI: 10.1134/S0031918X22601585.
3. Yurov V.M. Tolshchina poverkhnostnogo sloya atomarno-gladkikh kristallov [Thickness of the surface layer of atomic-smooth crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 389-397. DOI: 10.26456/pcascnn/2019.11.389. (In Russian).
4. Yurov V.M., Goncharenko V.I., Oleshko V.S., Guchenko S.A. Tolshchina poverkhnostnogo sloya i anizotropiya poverkhnostnoj energii kubicheskikh kristallov ruteniya [Surface layer thickness and anisotropy of the surface energy of cubic ruthenium crystal], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 522-533. DOI: 10.26456/pcascnn/2021.13.522. (In Russian).
5. Oura K., Lifshits V.G., Saranin A.A. et al. Vvedenie v fiziku poverkhnosti [Introduction to surface physics]. Moscow: Nauka Publ., 2006, 490 p. (In Russian).
6. Andrievski R.A. Nanomaterials based on high-melting carbides, nitrides and borides, Russian Chemical Reviews, 2005, vol. 74, issue 12, pp. 1061-1072. DOI: 10.1070/RC2005v074n12ABEH001202.
7. Rekhviashvili S.Sh., Kishtikova E.V., Karmokova R.Yu., Karmokov A.M. Calculating the Tolman constant, Technical Physics Letters, 2007, vol. 33, issue 1, pp. 48-50. DOI: 10.1134/S1063785007010130.
8. Zimon A.D. Adgeziya plenok i pokrytij [Adhesion of films and coatings]. Moscow, Chemistry Publ., 1977, 352 p. (In Russian).
9. Yurov V.M., Guchenko S.A., Laurinas V.Ch., Zavatskaya O.N. Structural phase transition in a surface layer of metals, Bulletin of the Karaganda university. Physics series, 2019, no. 1 (93), pp. 50-60. DOI 10.31489/2019Ph1/50-60.
10. Bazhenov M.F., Baichman S.G., Karpachev D.G. Tverdye splavy: spravochnik [Solid alloys: a reference book]. Moscow, Metallurgy Publ., 1978, 184 p. (In Russian).
11. Shikin A.M., Adamchuk V.K. Quantum confinement effects in thin metal layers on the surface of single crystals and their analysis, Physics of the Solid State, 2008, vol. 50, issue 6, pp. 1170-1185. DOI: 10.1134/S1063783408060280.
12. Peierls R. The size of a dislocation, Proceedings of the Physical Society, 1940, vol. 52, no. 1, pp. 34-37. DOI: 10.1088/0959-5309/52/1/305.
13. Nabarro F.R.N. Dislocations in a simple cubic lattice, Proceedings of the Physical Society, 1947, vol. 59, no. 2, pp. 256-272. DOI: 10.1088/0959-5309/59/2/309.
14. Usatenko O.V., Gorbach A.V., Kovalev A.S. The energy and peierls barrier of a Frenkel-Kontorova dislocation (kink), Physics of the Solid State, 2001, vol. 43, issue 7, pp. 1247-1251. DOI: 10.1134/1.1386458.
15. Fan T., Luo L., Tang B. et al. First-principles study of full A-dislocations in pure magnesium, Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, issue 4, pp. 672-681. DOI: 10.1134/S0021894414040130.
16. Greenberg B.A., Ivanov M.A. et al. On the possibility of the self-blocking of dislocations in various materials, The Physics of Metals and Metallography, 2009, vol. 108, issue 1, pp. 88-99. DOI: 10.1134/S0031918X09070114.
17. Blagoveschensky V.V., Panin I.G. Issledovanie modeli dislokatsionnogo istochnika Franka-Rida [Study of Frank-Read dislocation source model], Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki [Materials of Electronics Engineering], 2012, no. 1, pp. 40-45. (In Russian).
18. Garber R.I., Gindin I.A. Physics of the strength of crystalline materials, Soviet Physics Uspekhi, 1960, vol. 3, issue 1, pp. 41-77. DOI: 10.1070/PU1960v003n01ABEH003258.
19. Ovid'ko I.A., Sheinerman A.G. Nanocrack nucleation in polycrystalline silicon during grain-boundary sliding, Physics of the Solid State, 2007, vol. 49, issue 6, pp. 1111-1115. DOI: 10.1134/S1063783407060157.
20. Drozdov A. Yu., Baranov M.A., Bayankin V. Ya. Investigation of a miсroсraсk evolution in model metals under ion implantation. Сomputer simulation, Poverkhnost'. Rentgenovskie, sinkhrotronnye i nejtronnye issledovaniya [Surface Investigation: X-Ray, Synchrotron and Neutron Techniques], 2004, no. 5, pp. 76-80. (In Russian).
21. Morozov N.F., Ovid'Ko I.A., Skiba N.V. Influence of nucleation of the chains of nanoscopic grains near the vertexes of cracks on the crack resistance of nanocrystalline ceramics, Doklady Physics, 2013, vol. 58, issue 6, pp. 249-252. DOI: 10.1134/S1028335813060049.
22. Betekhtin V.I., Kadomtsev A.G. Evolution of microscopic cracks and pores in solids under loading, Physics of the Solid State, 2005, vol. 47, issue 5, pp. 825-831. DOI: 10.1134/1.1924839.
23. VettegrenV.I., Ponomarev A.V. et al. Razrushenie kvartsevogo diorita pri trenii [Destruction of quartz diorite at friction], Geophysical Research, 2020, vol. 21, no. 4, pp. 35-50 DOI: 10.21455/gr2020.4-3 (In Russian).
24. Vettegren V.I., Ponomarev A.V., Mamalimov R.I. et al. Nanocracks upon fracture of oligoclase, Izvestiya, Physics of the Solid Earth, 2021, vol. 57, issue 6, pp. 894-899. DOI: 10.1134/S1069351321060112.
25. Bukreeva K.A., Iskandarov A.M., Dmitriev S.V. et al. Theoretical shear strength of fcc and hcp metals, Physics of the Solid State, 2014, vol. 56, issue 3, pp. 423-428. DOI: 10.1134/S1063783414030081.
26. Kar’kina L.E., Kar’kin I.N., Gornostyrev Y.N. Effect of alloying element segregations on the grain boundary sliding in Al-Mg and Al-Ni alloy bicrystals: atomistic modeling, The Physics of Metals and Metallography, 2020, vol. 121, issue 9, pp. 817-822. DOI: 10.1134/S0031918X20090070.
27. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels, The Physics of Metals and Metallography, 2019, vol. 120, issue 3, pp. 303-311. DOI: 10.1134/S0031918X18120128.
28. Ioffe A.F. Otchet o rabote fiziko-tekhnicheskogo instituta [Report on the work of the Physics and Technology Institute], Soviet Physics Uspekhi, 1936, vol. 16, issue 7, pp. 848-871. DOI: 10.3367/UFNr.0016.193607c.0847. (In Russian).
29. Frenkel’ V.Ya. Abram Fedorovich Ioffe (Biographical sketch), Soviet Physics Uspekhi, 1980, vol. 23, issue 9, pp. 531-550. DOI: 10.1070/PU1980v023n09ABEH005854.
30. Chaus A.S., Čaplovič Ľ. et al. Formation of structure of a high-speed steel upon laser surface melting, The Physics of Metals and Metallography, 2019, vol. 120, issue 3, pp. 269-277. DOI: 10.1134/S0031918X19030049.
31. Botvina L.R., Bolotnikov A.I., Sinev I.O. Hierarchy of microcracks under cyclic and static loads, Physical Mesomechanics, 2020, vol. 23. issue 6, pp. 466-476. DOI: 10.1134/S1029959920060028.
32. Trusov P.V., Shveykin A.I., Kondratyev N.S., Yants A.Yu. Multilevel models in physical mesomechanics of metals and alloys: results and prospects, Physical Mesomechanics, 2020, vol. 24, issue 4, pp. 391-417. DOI: 10.1134/S1029959921040056.
33. Fedorenkov D.I., Kosov D.A., Tumanov A.V. A method of determining the constants and parameters of a damage accumulation model with isotropic and kinematic hardening, Physical Mesomechanics, 2023, vol. 26, issue 2, pp. 157-166. DOI: 10.1134/S1029959923020054.

⇐ Prevoius journal article | Content | Next journal article ⇒