Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Surface thickness water and ethanol

V.M. Yurov1, K.N. Zhangozin2

1 Karaganda Technical University named after A. Saginov
2 LP «TSK-Vostok»

DOI: 10.26456/pcascnn/2023.15.338

Original article

Abstract: A theoretical model is proposed that allows one to determine the thickness of the surface layer of liquid R(I). For water and ethanol it turned out to be 1,1 nm. As a result, ethanol is unlimitedly soluble in water. Methyl acetate, benzene and toluene (R(I) of above 1,4 nm) form azeotropic mixtures with water. Glycerol, nitrobenzene and mercury (R(I) greater than 3 nm) are practically insoluble in water. From the proposed model, we can conclude that the surface layer of the liquid is a nanostructure with size effects. It is of interest that the thickness of the surface layer of water coincides with the thickness of the surface layer of iron, cobalt and nickel. The work of adhesion and elastic constants for water and ethanol, including Young’s modulus, were also found. It was established that the elasticity of water is only 100 times less than the elasticity of steel, i.e. water can be considered as an incompressible substance, and the internal friction in water is three times greater than in ethanol. It is also shown that the universal element of the geometry of spaces of liquid systems is the tetrahedron, which corresponds to sp3 hybridization of interatomic or intermolecular bonds.

Keywords: surface layer, water, ethanol, liquid, layer thickness, cluster

  • Viktor M. Yurov – Ph. D., Associate Professor, Deposits of minerals Department, Karaganda Technical University named after A. Saginov
  • Kanat N. Zhangozin – Ph. D., Associate Professor, Director, LP «TSK-Vostok»


Yurov, V.M. Surface thickness water and ethanol / V.M. Yurov, K.N. Zhangozin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 338-349. DOI: 10.26456/pcascnn/2023.15.338. (In Russian).

Full article (in Russian): download PDF file


1. Thompson M. Philosophy for Life (Teach Yourself), John Murray Press, 2018, 320 p.
2. Bulienkov N.A. Systemic structural modular generalization of the crystallography of bound water applied to study the mechanisms of processes in biosystems at the atomic and molecular level, Crystallography Reports, 2011, vol. 56, no. 4, pp. 680-697. DOI: 10.1134/S1063774511040043.
3. Yurov V.M., Guchenko S.A., Laurinas V.Ch. Tolshchina poverkhnostnogo sloya, poverkhnostnaya energiya i atomnyj ob"em elementa [Thickness of the surface layer, surface energy and atomic volume of the element], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 691-699. DOI: 10.26456/pcascnn/2018.10.691. (In Russian).
4. Yurov V.M. Tolshchina poverkhnostnogo sloya atomarno-gladkikh kristallov [Thickness of the surface layer of atomic-smooth crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 389-397. (In Russian). DOI: 10.26456/pcascnn/2019.11.389.
5. Yurov V.M., Goncharenko V.I., Oleshko V.S., Guchenko S.A. Tolshchina poverkhnostnogo sloya ianizotropiya poverkhnostnoj energii kubicheskikh kristallov ruteniya [Surface layer thickness and anisotropy of the surface energy of cubic ruthenium crystal], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur I nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 522-533. DOI: 10.26456/pcascnn/2021.13.522. (In Russian).
6. Yurov V.M._ Portnov V.S._ Mausimbaeva A.D. Tolschina poverhnostnogo sloya karkasnih uglevodorodov [The thickness of the surface layer of frame hydrocarbons], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur I nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 331-341. DOI: 10.26456/pcascnn/2022.14.331. (In Russian).
7. Tolman R.C. The effect of droplet size on surface tension, Journal of Chemical Physics, 1949, vol. 17, issue 2, pp. 333-337. DOI: 10.1063/1.1747247.
8. Laplace P. S. Exposition du systéme du monde, 2nd ed., Cambridge University Press, 1795. viii+351 p. DOI: 10.1017/CBO9780511693335. (In French).
9. Rusanov, A.I. Metod dvukh razdelyayushchikh poverhnostej v termodinamike tonkikh plenok [Method of two separating surfaces in the thermodynamics of thin films], Poverkhnostnye sily i granichnye sloi zhidkostej [Surface forces and boundary layers of liquids], ed. B.V. Deryagina, Moscow, Nauka Publ., 1983, pp. 152-159. (In Russian).
10. Tsai C.J., Jordan K.D. Theoretical study of the (H20)6 cluster, Chemical Physics Letters, 1993, vol. 213, issue 1-2, pp. 181-188. DOI: 10.1016/0009-2614(93)85438-Т.
11. Smirnov A.N. Novye struktury vody-emulony [New structures of water-emulons], Khimiya i zhizn' [Chemistry and Life], 2012, no. 12, pp. 36-39. (In Russian).
12. Nilsson A., Pettersson L.G.M. Perspective on the structure of liquid water, Chemical Physics, 2011, V. 389, issue 1-3, pp. 1-34. DOI: 10.1016/j.chemphys.2011.07.021.
13. Ignatov I., Mosin O.V., Velikov B. Matematicheskie modeli, opisyvayushchie strukturu vody [Mathematical models describing the structure of water], Internet-zhurnal «NAUKOVEDENIE», 2013, no. 3 (16), 25 p. (In Russian).
14. Chen M., Ko H.-Yu., Remsing R.C. et al. Ab initio theory and modeling of water, PNAS, 2017, vol. 114, no. 41, pp. 10846-10851. DOI: 10.1073/pnas.1712499114
15. Chaplin M.F. Structure and Properties of Water in its Various States, Encyclopedia of Water: Science, Technology, and Society, ed. by P.A. Maurice, John Wiley & Sons, 2019, pp. 1-19. DOI: 10.1002/9781119300762.wsts0002.
16. Polyanskaya A.V., Polyanskii A.M., Polyanskii V.A. Relationship between transport phenomena and characteristics of the cluster structure, Technical Physics, 2019, vol. 64, issue 6, pp. 902-908. DOI: 10.1134/S106378421906015X.
17. Urquidi J., Singh S., Cho C.H., Robinson G.W. Origin of temperature and pressure effects on the radial distribution function of water, Physical Review Letters, 1999, vol. 83, issue 12, pp. 2348-2350. DOI: 10.1103/PhysRevLett.83.2348.
18. Poole P.H., Sciortino F., Essmann U., Stanley H.E. Phase-behavior of metastable water, Nature, 1992, vol. 360, pp. 324-328. DOI: 10.1038/360324a0.
19. Artemov V.G., Pronin A.V., Volkov A.A. Electrical properties of water: a new insight, Biophysics, 2014, vol. 59, issue 4, pp. 520-523. DOI: 10.1134/S0006350914040022.
20. Wanga Y., Weia H., Lia Zh. Effect of magnetic field on the physical properties of water, Results in Physics, 2018, vol. 8, pp. 262-267. DOI: 10.1016/j.rinp.2017.12.022.
21. Beauvais F. Memory of water and blinding, Homeopathy, 2008, vol. 97, issue 1, pp. 41-42. DOI: 10.1016/j.homp.2007.10.001.
22. Maheshwary S., Patel N., Sathyamurthy al. Structure and stability of water clusters (H2O)n, n=8-20: an ab initio investigation, The Journal of Physical Chemistry A, 2001, vol. 105, issue 46, pp. 10525-10537. DOI: 10.1021/jp013141b
23. Liu Y., Consta S., Ogeer F. et al. Geometries and energetics of methanol–ethanol clusters: a VUV laser/timeof-flight mass spectrometry and density functional theory study, Canadian Journal of Chemistry, 2007, vol. 85, no. 10, pp. 843-852. doi:10.1139/V07-104.
24. Buck U., Siebers J.-G., Wheatley R.J. Structure and vibrational spectra of methanol clusters from a new potential model, The Journal of Chemical Physics, 1998, vol. 108, issue 1, pp. 20-32. DOI: DOI: 10.1063/1.475361.
25. Jorgensen W.L. Optimized intermolecular potential functions for liquid alcohols, The Journal of Physical Chemistry, 1986, vol. 90, issue 7, pp. 1276-1284. DOI: 10.1021/j100398a015.
26. Shi Y.J., Consta S., Das A.K. et al. A 118 nm vacuum ultraviolet laser/time-of-flight mass spectroscopic study of methanol and ethanol clusters in the vapor phase, The Journal of Chemical Physics, 2002, vol. 116, issue 16, pp. 6990-6999. DOI: DOI: 10.1063/1.1466467.
27. Fanourgakis G.S., Shi Y.J., Consta S., Lipson R.H. A spectroscopic and computer simulation study of butanol vapors, The Journal of Chemical Physics, 2003, vol. 119, issue 13, pp. 6597-6608. DOI: 10.1063/1.1605384.
28. Zimon A.D. Adgeziya plenok i pokritii [Adhesion of films and coatings], Moscow, Khimiya Publ., 1977, 352 p. (In Russian).
29. Golovin I.S. Vnutrennee trenie i mekhanicheskaya spektroskopiya metallicheskikh materialov [Internal friction and mechanical spectroscopy of metallic materials], Moscow, MISiS Publ., 2012, 247 p. (In Russian).
30. Andrijievskii A.A. Mekhanika zhidkosti i gaza [Fluid and gas mechanics]. – Minsk, BGTU, 2014, 203 p. (in Russian).
31. Tsarev M.V. Generatsiya i registratsiya teragertsovogo izlucheniya ul'trakorotkimi lazernymi impul'sami [Generation and detection of terahertz radiation by ultrashort laser pulses], Nizhny Novgorod: Nizhny Novgorod State University Publ., 2011, 75 p. (In Russian).
32. Kholmanskij, A.S. Dikhotomiya pravogo i levogo [Dichotomy of right and left], Kvantovaya Magiya [Quantum Magic], 2007, vol. 4, issue 3, pp. 3125-3131. (In Russian).
33. Bulienkov N.A., Zheligovskaya E.A. Functional modular dynamic model of the surface layer of water, Russian Journal of Physical Chemistry A, 2006, vol. 80, issue 10, pp. 1584-1604. DOI: 10.1134/S0036024406100086.
34. Bulienkov N.A., Zheligovskaya E.A., Klechkovskaya V.V., Ivakin G.I. Role of the surface layer of aqueous subphase in the self-organization mechanism of metal sulfide textures under a Langmuir monolayer, Crystallography Reports, 2011. vol. 56, issue 3, pp. 517-525. DOI: 10.1134/S1063774511020040.
35. Zheligovskaya E.A., Bulienkov N.A. Rod structures of bound water: a possible role in self-organization of biological systems and nondissipative energy transmission, Biophysics, 2017, vol. 62, issue 5, pp. 683-690. DOI: 10.1134/S0006350917050256.
36. Zheligovskaya E.A. Structural mechanisms of phase transitions of water ices II, IV, and V to metastable ice Ic at atmospheric pressure, Russian Journal of Physical Chemistry A, 2023, vol. 97, issue 1, pp. 11-18. DOI: 10.1134/S0036024423010387.

⇐ Prevoius journal article | Content | Next journal article ⇒