Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Influence of the initial composition on the phase equilibria in the case of the solid phase separation in binary alloy nanoparticles (exemplifying on the W-Cr system)

A.V. Shishulin1, A.V. Shishulina2

1 PleiadesPubl., Ltd
2 R.E. Alekseev Nizhny Novgorod State Technical University

DOI: 10.26456/pcascnn/2023.15.299

Short communication

Abstract: Due to a unique set of physico-chemical properties, nanoparticle-fabricated heavy tungstenpseudo-alloys with  the ultrafine-grained structure have become an object of a strong interest among researchers in the case of the up-to-date additive powder metallurgy technologies. In this paper, the peculiarities of the phase composition have been simulated in the framework of a thermodynamic approach to core-shell nanoparticles of a stratifying sold solution using the heavy W-Cr pseudo-alloy as an example. For a two-component system with the phase separation in the solid state, a specific effect has been demonstrated which consists in the fact that, unlike system in the macroscopic state, it is not only the volume fraction of co-existing phases but also their equilibrium composition varies depending on the initial composition of a the system. For two different heterogeneous states of a coreshell structure, the thermal stability areas have been obtained along with temperature-dependent equilibrium phase compositions of the system in each state. A thermodynamic interpretation of the obtained results has been described based on three possible mechanisms of reducing the free energy of the system.

Keywords: nanoparticles, phase separation, chemical thermodynamics, solubility, core-shell, tungsten, chromium

  • Alexander V. Shishulin – Ph.D., PleiadesPubl., Ltd
  • Anna V. Shishulina – Ph.D., Associate Professor, R.E. Alekseev Nizhny Novgorod State Technical University

Reference:

Shishulin, A.V. Influence of the initial composition on the phase equilibria in the case of the solid phase separation in binary alloy nanoparticles (exemplifying on the W-Cr system) / A.V. Shishulin, A.V. Shishulina // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 299-307. DOI: 10.26456/pcascnn/2023.15.299. (In Russian).

Full article (in Russian): download PDF file

References:

1. Vilémová M., Illková K., Lukáš F. et al. Microstructure and phase stability of W-Cr alloy prepared by spark plasma sintering, Fusion Engineering and Design, 2018, vol. 127, pp. 173-178. DOI: 10.1016/j.fusengdes.2018.01.012.
2. Hou Q.-Q., Huang K., Luo L.-M. et al. Microstructure and its high temperature oxidation behavior in W-Cr alloys prepared by spark plasma sintering, Materialia, 2019, vol. 6, art. no. 100332, 8 p. DOI: 10.1016/j.mtla.2019.100332.
3. Bose A., Schuh C.A., Tobia J.C. et al. Traditional and additive manufacturing of a new tungsten heavy alloy alternative, International Journal of Refractory Metals and Hard Materials, 2018, vol. 73, pp. 22-28. DOI: 10.1016/j.ijrmhm.2018.01.019.
4. Tilmann W., Fehr A., Heringhaus M. Mechanical milling to foster the solid solution formation and densification in Cr-W-Si for hot-pressing of PVD target materials, Advanced Powder Technology, 2021, vol. 32, issue 6, pp. 1927-1934. DOI: 10.1016/j.apt.2021.04.001.
5. Olakanmi E.O., Cochrane R.F., Dalgarno K.W. A review of selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progress in Materials Science, 2015, vol. 74,pp. 401-477. DOI: 10.1016/j.pmatsci.2015.03.002.
6. Cordero Z.C., Carpenter R.R., Schuh C.A., Schuster B.E. Sub-scale ballistic testing of an ultrafine grained tungsten alloy into concrete targets, International Journal of Impact Engineering, 2016, vol. 91, pp. 1-5. DOI: 10.1016/j.ijimpeng.2015.11.013.
7. Chookajorn T., Park M., Schuh C.A. Duplex nanocrystalline alloys: entropic nanostructure stabilization and a case study on W-Cr, Journal of Materials Research, 2015, vol. 30, issue 2, pp. 151-162. DOI: 10.1557/jmr.2014.385.
8. Shishulin A.V., Fedoseev V.B. Size effect in the phase separation of Cr-W solid solutions, Inorganic Materials, 2018, vol. 54, issue 6, pp. 546-549. DOI: 10.1134/S0020168518050114.
9. Geoffrion L.-D., Guisbiers G. Chemical ordering in Bi1-x–Sbx nanostructures: alloy, janus or core-shell? Journal of Physical Chemistry C, 2020, vol. 124, issue 25, pp. 14061-14068. DOI: 10.1021/acs.jpcc.0c04356.
10. Mendoza-Pérez R., Muhl S. Phase diagrams of refractory bimetallic nanoalloys, Journal of Nanoparticle Research, 2020, vol. 22, issue 10, art. no. 306, 15 p. DOI: 10.1007/s11051-020-05035-x.
11. Shirinyan A., Wilde G., Bilogorodskyy Y. Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu-Ni alloys as a model system, Journal of Materials Science, 2020, vol. 55, issue 26, pp. 12385-12402. DOI: 10.1007/s10853-020-04812-2.
12. Shishulin A.V., Shishulina A.V. Nekotorye osobennosti vysokotemperaturnykh fazovykh ravnovesij v nanochastitsakh sistemy Six-Ge1-x [Several peculiarities of high-temperature phase equilibria in nanoparticles of the Six-Ge1-x system], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 268-276. DOI: 10.26456/pcascnn/2019.11.268. (in Russian).
13. Shishulin A.V., Fedoseev V.B. Thermal stability and phase composition of stratifying polymer solutions in small-volume droplets, Journal of Engineering Physics and Thermophysics, 2020, vol. 93, issue 4, pp. 802-809. DOI: 10.1007/s10891-020-02182-9.
14. Shishulin A.V., Potapov A.A., Fedoseev V.B. Phase equilibria in fractal core-shellnanoparticles of the Pb5(VO4)3Cl- Pb5(VO4)3Cl system: the influence of size and shape, Advances in Artificial Systems for Medicine and Education II, ed. by Z. Hu, S. Petouhov, M. He, Cham, Springer, 2020, pp. 405-413. DOI: 10.1007/978-3-030-12082-5_37.
15. Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions: nanoscale effects on phase equilibria, thermal conductivity, thermoelectric performance, Springer Proceedings in Complexity, ed. by C.H. Skiadas, Y. Dimotikalis, Cham, Springer, 2022, pp. 421-432. DOI: 10.1007/978-3-030-96964-6_30.
16. Magomedov M.N. O zavisimosti fazovoy diagrammy splava zamescheniya ot razmera i formy nanokristalla [On the dependence of the phase diagram of a substitution alloy on the size and shape of a nanocrystal], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 291-300. DOI: 10.26456/pcascnn/2017.9.291. (in Russian).
17. Shishulin A.V., Fedoseev V.B. Stratifying polymer solutions in microsized pores: phase transitions induced by deformation of a porous material, Technical Physics, 2020, vol. 65, issue 3, pp. 340-346. DOI: 10.1134/S1063784220030238.
18. Shishulin A.V., Fedoseev V.B., Shishulina A.V. O vliyanii vneshnej sredy na fazovye ravnovesiya v sisteme malogo ob"ema na primere raspada tverdogo rastvora Bi-Sb [Environment-dependent phase equilibria in a small-volume system in the case of the decomposition of Bi-Sb solid solutions], Butlerovskiye soobscheniya [Butlerov Communications], 2017, vol. 51, issue 7, pp. 31-37.(In Russian).
19. Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining the melting behaviour of nanoparticles (a case study on Six-Ge1-x alloys), Eurasian Physical Technical Journal, 2021, vol. 18, issue 4(38), pp. 5-13. DOI: 10.31489/2021No4/5-13.
20. Shishulin A.V., Shishulina A.V. One more parameter determining the stratification of solutions in smallvolume droplets, Journal of Engineering Physics and Thermophysics, 2022, vol. 95, issue 6, pp. 1374-1382. DOI: 10.1007/s10891-022-02606-8.
21. Samsonov V.M., Demenkov D.E., Karacharov V.I., Bembel’ A.G. Fluctuation approach to the problem of thermodynamics’ applicability to nanoparticles, Bulletin of the Russian Academy of Sciences: Physics, 2011, vol. 75, issue 8, pp. 1073-1077. DOI: 10.3103/S106287381108034X.
22. Shishulin A.V., Fedoseev V.B. Effect of initial composition on the liquid-solid phase transition in Cr-W alloy nanoparticles, Inorganic Materials, 2019, vol. 55, issue 1, pp. 14-18. DOI: 10.1134/S0020168519010138.
23. Shishulin A.V., Shishulina A.V. Ravnovesnyj fazovyj sostav i vzaimnaya rastvorimost' komponentov v nanochastitsakh fraktal'noj formy tyazhelogo psevdosplava W-Cr [Equilibrium phase composition and mutual solubilities in fractal nanoparticles of the W-Cr heavy pseudo-alloy], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 380-388. DOI: 10.26456/pcascnn/2019.11.380 (in Russian).
24. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
25. Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles, Technical Physics, 2021, vol. 66, issue 1, pp. 34-40. DOI: 10.1134/S1063784221010072.
26. Anofriev V.A., Nizenko A.V., Ivanov D.V. et al. K problem avtomatizatsii protsessa opredeleniya fraktal'noj razmernosti [To the problem of automation of the process of determination of the fractal dimension], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 264-276. DOI: 10.26456/pcascnn/2022.14.264 (in Russian).
27. Shishulin A.V., Potapov A.A., Shishulina A.V. Several notes on the lattice thermal conductivity of fractalshaped nanoparticles, Eurasian Physical Technical Journal, 2022, vol. 19, issue 3(41), pp. 10-17. DOI: 10.31489/2022No3/10-17.

⇐ Prevoius journal article | Content | Next journal article ⇒