Surface energy and electron work function for polimorphyc modifications of titanium
I.G. Shebzukhova1, L.P. Aref`eva2
1 KabardinoBalkarian State University named after H.M. Berbekov
2 Don State Technical University
DOI: 10.26456/pcascnn/2023.15.288
Original article
Abstract: In this work, the surface energy of titanium crystal faces was estimated using theelectron-statistical method, taking into account the contributions of the dispersion, polarization, and oscillation corrections. Using an analytical relationship, the values of the work function of close-packed faces of polymorphic modifications of titanium are calculated from the values of the surface energy of single crystals taking into account the crystal structure. The influence of polymorphic transformation and temperature on the anisotropy of the studied properties is shown. Based on the values of the surface and interfacial energies, which consist of the average configurational energy and the energy of chemical interaction of two parts of the metal, the cohesive energy of α- and β-titanium is estimated and its dependence on temperature is shown. On the example of tungsten-titanium and molybdenumtitanium systems, the fundamental possibility of calculating the change in the work function depending on the concentration of the surface-active component in bimetallic systems is shown, which makes it possible to predict the service life of the material.
Keywords: surface energy, electron work function, anisotropy, polymorphic modifications of titanium, cohesion energy
- Irina G. Shebzukhova – Dr. Sc., Professor, Department of Theoretical and Experimental Physics, KabardinoBalkarian State University named after H.M. Berbekov
- Ludmila P. Aref`eva – Dr. Sc., Docent, Department of Material Science and technology of metals, Don State Technical University
Reference:
Shebzukhova, I.G. Surface energy and electron work function for polimorphyc modifications of titanium / I.G. Shebzukhova, L.P. Aref`eva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 288-298. DOI: 10.26456/pcascnn/2023.15.288. (In Russian).
Full article (in Russian): download PDF file
References:
1. Toryannikov A.Yu., Baryshnikov A.A. Mikrostruktura i svoystva titanovykh splavov [Microstructure and properties of titanium alloys] Molodoy uchenyy [Young scientist], 2021, no. 49 (391), pp. 47-51. Available at: https://moluch.ru/archive/391/86400 / (accessed 11.02.2023).
2. Feng E., Gao D., Wang Y. et al. Sustainable recovery of titanium from secondary resources: A review, Journal of Environmental Management, 2023, vol. 339, art. no. 117818, 12 p. DOI: 10.1016/j.jenvman.2023.117818
3. Bignon M., Bertrand E., Rivera-Díaz-del-Castillo P.E.J., Tancret F. Martensite formation in titanium alloys: Crystallographic and compositional effects, Journal of Alloys and Compounds, 2021, vol. 872, art. no. 159636, 16 p. DOI: 10.1016/j.jallcom.2021.159636.
4. Grigoriev G.Y., Kovalchuk M.V., Chaivanov B.B., Mayorov A.S. Tumanov Y.N. Sposob polucheniya nanodispersnykh poroshkov v plazme SVCH-razryada i ustroystvo dlya yego osushchestvleniya [A method for obtaining nanodisperse powders in microwave discharge plasma and a device for its implementation]. Patent RF no. 2455061, 2021. (In Russian).
5. Sharonov G.V., Zharin A.L., Muhurov N.I., Pantsialeyeu K.V. Kontrol' metallicheskikh poverkhnostey, obrabotannykh almaznym nanotocheniyem, po rabote vykhoda elektrona [Control of metal surfaces machined in accordance with the diamond nanomachining technology based on the electron work function], Pribory i metody izmereniy [Devices and Methods of Measurements], 2015, vol. 6, no.2, pp. 196-203. (In Russian).
6. Gerasimov I.V., Oleshko V.S., Tkachenko D.P., Kirpichnikov A.P. Kontrol' prizhogov lopatok kompressora gazoturbinnogo dvigatelya metodom kontaktnoy raznosti potentsialov [Control of cauterization of gas turbine engine compressor blades by the method of contact potential difference], Vestnik Kazanskogo tekhnologicheskogo universiteta [Bulletin of Kazan Technological University], 2012. vol. 15, no. 17. pp. 146-149. (In Russian).
7. Samoylenko V.M. Oleshko V.S. Primeneniye pribora izmereniya kontaktnoy raznosti potentsialov «Poverkhnost' -11» v nerazrushayushchem kontrole detaley mashin [Application of the device of measurement of the contact potential difference «Surface -11» in nondestructive testing of details of machines], Oboronnyy kompleks – nauchno-tekhnicheskomu progressu Rossii [Defense complex – scientific and technical progress of Russia], 2011, no. 2, pp. 3-6. (In Russian).
8. Panteleev K.V. Svistun A.I., Zharin A.L. Metody izmereniy raboty vykhoda elektrona dlya kontrolya sostoyaniya poverkhnosti v protsesse treniya [Methods for work function measurements for the test of a surface in a during friction], Pribory i metody izmereniy [Devices and Methods of Measurements], 2014, no.2, pp. 107-113. (In Russian).
9. Kharlamov F.V. Kharlamov V.F. A method for studying catalytic reactions based on chemiemission of electrons, Russian Journal Physical Chemical B, 2010, vol. 4, no.3, pp. 391-398. DOI: 10.1134/S199079311003005X.
10. Svoystva elementov. Spravochnik [Properties of elements. Handbook], ed. M.E. Drits, Moscow, Metallurgiya Publ., 1985, 672 p. (In Russian).
11. Svoystva elementov. Spravochnik [Properties of elements. Handbook], Moscow, Metallurgiya Publ., 1976, part 1, 600 p. (In Russian).
12. Shebzukhova I.G. Aref’eva L.P., Khokonov Kh.B. Temperature dependence of the surface energy of various crystal faces of the polymorphic phases of actinides, The Physics of Metals and Metallography, 2008, vol. 105, issue 4, pp. 338-342. DOI: 10.1134/S0031918X08040042.
13. Shebzukhova, I.G., Aref’eva L.P. Otsenka polyarizatsionnoy i dispersionnoy popravok k poverkhnostnoy energii graney metallicheskikh kristallov [Estimation of the polarization and dispersion corrections to the surface energy of the faces of metal crystal], Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physico-chemical aspects of studying clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 319-325. DOI: 10.26456/pcascnn/2020.12.319.
14. Shebzukhova, I.G., Aref'eva L.P. Anisotropy of the surface energy and work function of IIB metals, Technical Physics, 2019, vol. 64, issue 2, pp. 274-277. DOI: 10.1134/S1063784119020208.
15. Aref'eva L.P., Shebzukhova, I.G. Electron work function and surface energy of body-centered and facecentered cubic modifications of 4d- and 5d-metals, Physics of the Solid State, 2016, vol. 58, issue 7, pp. 1289-1294. DOI: 10.1134/S1063783416070040.
16. Arzamasov V.B., Smirnova E.E., Stroev A.A., Polunov I.L., Rykov D.E. Rabota vykhoda elektrona splavov tugoplavkikh metallov [Electron work function of refractory metal alloys], Izvestiya MGTU MAMI, 2009, no. 1 (7), pp.102-104. (In Russian).
17. Li Y., Li D.Y. Electron work function, adhesion, and friction between 3d transition metals under light loads, Wear, 2005, vol. 259, issue 7-12, pp. 1432-1436. DOI: 10.1016/j.wear.2005.01.027.
18. Nizhenko V.I., Floka L.I. Poverkhnostnoye natyazheniye metallov i splavov. Spravochnik [Surface tension of metals and alloys. Handbook], Moscow, Metallurgiya Publ., 1981, 208 p. (In Russian).