Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов
Основан в 2009 году


Принятые статьи


Влияние нанодисперсной фазы магнитных масел на их смазочные свойства

Аннотация: Работа посвящена изучению процессов, протекающих в граничном смазочном слое, в которых нанодисперсные магнитные частицы играют определяющую или значительную роль. Исследовалось трение между металлическими поверхностями смазанными маслами с различной концентрацией магнитной нанодисперсной фазы. Дисперсионная среда магнитных масел состояла из жидкостей с различными физико-химическими свойствами: диоктилсебацината, триэтаноламина, полиэтилсилоксана. Было показано, что интенсивность изнашивания поверхностей с твердостью выше, чем у наночастиц монотонно возрастает по мере увеличения концентрации частиц, а износ носит абразивный характер. Интенсивность изнашивания более мягких материалов проходит через минимум при концентрации частиц около 2 об.%. Магнитная сепарация крупных агломератов в масле позволяет на некоторое время уменьшить абразивный износ, пока они не образуются снова в условиях трения. Выявить закономерности влияния нанодисперсных частиц на силу трения не удалось, вероятно оно несущественное. Рассмотрено несколько примеров косвенного влияния нанодисперсных частиц на граничное трение. Во всех примерах определяющую роль играет огромная по площади активная поверхность частиц в единице объема масла. Например, в условиях трения может активно образовываться атомарный водород при химическом взаимодействии жирных кислот с поверхностью. Атомарный водород аккумулируется в подповерхностных порах, молизуется там. Повышенное давление в порах, создаваемое молекулами водорода, приводит к увеличению износа по механизму отслаивания. Представляют научный интерес установленные закономерности влияния нанодисперсных частиц на скорость формирования граничного смазочного слоя и коррозионный износ поверхностей, вызванный поверхностно-активными присадками в магнитном масле.

Общий феноменологический подход для описания адсорбционных и абсорбционных равновесий

Аннотация: Вплоть до настоящего времени весьма актуальной задачей является построение общей теории равновесной адсорбции. В представленной работе дан общий феноменологический подход для описания как адсорбционных, так и абсорбционных равновесий. Было показано, что при определенных допущениях полученное уравнение переходит в известные классические уравнения Генри, Лэнгмюра, Брунауэра-Эмметта-Теллера с константами, имеющими ясный физический смысл. Так, константа в уравнении Генри определяется температурой, удельной поверхностью адсорбента, размером молекул адсорбата, молярной массой адсорбата и изостерической теплотой адсорбции (энергией взаимодействия молекул адсорбата с поверхностью адсорбента). В выведенном частном уравнении Брунауэра-Эмметта-Теллера, в отличие от классического варианта, впервые указана ясная зависимость константы уравнения от конкретных физических характеристик адсорбционной системы. Она определяется концентрацией молекул адсорбата в жидкой фазе при рассматриваемой температуре, концентрацией молекул адсорбата при образовании плотного монослоя на поверхности адсорбента, энергией взаимодействия молекул адсорбата с поверхностью адсорбента и теплотой конденсации. Представленный подход может служить основой для моделирования самых различных адсорбционных и абсорбционных явлений, включая адсорбцию на микропористых адсорбентах.

Вискозиметрические исследования в процессе синтеза магнитных смазочных наномасел

Аннотация: В области трибологии перспективны магнитные смазочные масла, в которых для повышения их коллоидной устойчивости используют полимеры, однако их применение ограничено низкой намагниченностью коллоида. Повысить намагниченность наномасел возможно путем синтеза полимерных оболочек непосредственно на поверхности магнитных частиц в процессе получения наномасел. Описаны особенности технологии синтеза магнитных смазочных наномасел с полимерными сольватными оболочками на частицах, которые защищают их от коагуляции. Полимеризация молекул гидроксикислоты протекает по механизму поликонденсации на твердой поверхности магнетита. Вязкость магнитного коллоида возрастает из-за увеличения толщины сольватной оболочки. Исходя из этого предложено дифференциальное уравнение, которое показывает зависимость скорости роста вязкости коллоида от скорости реакции поликонденсации. Экспериментальная проверка уравнения показала, что оно выполняется с точностью до 8%. Полученное уравнение позволяет определить важную термодинамическую характеристику – энергии активации процесса синтеза полимерных оболочек на поверхности дисперсных частиц. Для расчетов нужно знать скорость изменения вязкости коллоида с дисперсионной средой без мономера (гидрокислоты). Поэтому, в процессе синтеза полимера отбираются пробы промежуточного магнитного коллоида небольшого объема, которые используются для определения вязкости коллоида и дисперсионной среды, содержащей мономер. Затем находится вязкость коллоида с чистой дисперсионной средой, необходимая для расчетов энергии активации реакции поликонденсации. По оценочным расчетам, ошибка определения энергии активации не превышает 11%. На практике, с помощью установленного значения энергии активации полимеризации, можно выполнять целенаправленный выбор оптимального температурно-временного режима стабилизации магнитного коллоида с целью получения магнитного наномасла с требуемыми характеристиками вязкости и агрегативной устойчивости. Экспериментальные исследования проводились на специально разработанных приборах для оценки коллоидной стабильности и динамической вязкости магнитных коллоидов.