Accepted articles
Lubricant properties of nanodisperse magnetic oils based on novel technical liquids
Abstract: The paper presents the results of studying properties of magnetic lubricating oils synthesized based on fluoroorganic fluids and triethanol. The lubricating properties of oils were determined in the boundary friction mode under medium and high contact pressures. It is shown that magnetic oils based on perfluoropolyether have higher lubricating properties than oils based on other fluids, especially in the medium load range. The anti-wear properties and aggregative stability of oil begin to deteriorate sharply at temperatures exceeding 150°С. The use of perfluoropolyether liquid as an additive to oil made it possible to improve the antiwear properties of magnetic oil at medium and high contact pressures. The lubricating properties of magnetic oils based on triethanolamine are approximately the same as those of magnetic oils based on siloxanes, but worse than those of traditional non-magnetic oils. In terms of tribological properties, the studied magnetic oils are comparable to traditional plastic and liquid lubricants. The fact that magnetic oils have magnetic properties that are anomalous for liquids expands the area of their effective application significantly.
Nanosimensional effect changes in the surface roughness of a magnetostriction nature
Abstract: In this paper, we studied the changes in the topography of the surface of a part made of magnetostrictive magnetoplast under the influence of a magnetic field. Theoretical analysis has shown that in composite materials when using magnetostrictive particles with a dispersion of 10-4÷10-6 m, a change in the surface roughness parameters is possible in the range of 10-7÷10-9 m, depending on the magnetostrictive constants of the filler. Local changes in the topography of the magnetoplast surface in a magnetic field with a strength of about 560 kA/m are experimentally determined, and an assessment is made of the integral changes characterizing the surface as a whole. For the experiment, a composite material containing a powder of TeFe2 material with a uniquely high linear magnetostriction (λs = 2∙103) was chosen. It has been established that the effect of the nanoroughness surface changing is especially pronounced for relatively smooth surfaces and depends on the composition, concentration, size, and orientation of the microfine magnetic filler. For the studied surfaces of magnetoplasts, the change in the height parameters of roughness exceeds 5%. In absolute terms, the change in the topography of the surface is tens of nanometers. In precision engineering, the detected effect can be used to control frictional characteristics, in particular, to change the friction force without contact, control the flow of small doses of various reactive gases, and change the dynamics of wetting processes of solid surfaces.