Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Determination of the optimal configuration of the molecular system «manganese silicate nanoparticles-an essential amino acid»

A.A. Blinova1, E.S. Kastarnova2, M.A. Pirogov1, Ye..S. Kuznetsov3, P.S. Leontiev1, D.D. Filippov1

1 North Caucasus Federal University
2 Stavropol State Agrarian University
3 Stavropol State Medical University

DOI: 10.26456/pcascnn/2023.15.940

Original article

Abstract: In this study, the optimal configuration of the molecular system «manganese silicate nanoparticles – essential amino acid» was determined using quantum chemical simulation. To begin with, quantum chemical simulation of individual molecules of manganese silicate and essential amino acids was carried out, after which molecular systems «manganese silicate nanoparticles – essential amino acids» were modeled, in which an oxygen atom attached to silicon atom in manganese silicate was combined with an ionized amino group of amino acids. As a result, it was found that the molecular systems «manganese silicate nanoparticles – essential amino acids» are energetically advantageous and chemically stable. Based on the data obtained, it can be concluded that the optimal configuration of these molecular systems is the interaction of manganese silicate with lysine through the ionized α-amino group of lysine. This molecular system has the highest values of the difference in total energy (ΔE = 73.268 kcal/mol) and chemical hardness (η = 0.144 eV), which are indicators of energy benefits and chemical stability of molecular system. After mixing manganese acetate, L-lysine and sodium silicate, manganese silicate nanoparticles stabilized with L-lysine were obtained.

Keywords: manganese silicate nanoparticles, essential amino acids, quantum chemical modeling, lysine, IR spectroscopy

  • Anastasia A. Blinova – Ph. D., Docent, Department of Physics and Technology of Nanostructures and Materials, North Caucasus Federal University
  • Elena S. Kastarnova – Ph. D., Researcher, Department of Therapy and Pharmacology, Stavropol State Agrarian University
  • Maxim A. Pirogov – 4th year student, Department of Physics and Technology of Nanostructures and Materials of the Faculty of Physics and Technology, North Caucasus Federal University
  • Yegor S. Kuznetsov – 3rd year student, Pediatric Faculty, Stavropol State Medical University
  • Pavel S. Leontiev – 3rd year student, Department of Physics and Technology of Nanostructures and Materials of the Faculty of Physics and Technology, North Caucasus Federal University
  • Dionis D. Filippov – 3rd year student, Department of Physics and Technology of Nanostructures and Materials of the Faculty of Physics and Technology, North Caucasus Federal University

Reference:

Blinova, A.A. Determination of the optimal configuration of the molecular system «manganese silicate nanoparticles-an essential amino acid» / A.A. Blinova, E.S. Kastarnova, M.A. Pirogov, Ye..S. Kuznetsov, P.S. Leontiev, D.D. Filippov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 940-949. DOI: 10.26456/pcascnn/2023.15.940. (In Russian).

Full article (in Russian): download PDF file

References:

1. Makarova V.N., Sklyarova E.K. Istoriya meditsiny: aktual'nye problemy i perspektivy izucheniya [History of medicine: current problems and prospects for study], Materialy mezhdunarodnoj nauchnoj konferentsii «Nauka i obshchestvo-2019», Rostov-na-Donu, 26 aprelya 2019 [Proceedings of the international scientific conference «Science and Society-2019», Rostov-on-Don, April 26, 2019], ed. by N.B. Osipyan, Moscow, Moscow Witte University Publ., 2019, pp. 317-323. (In Russian).
2. Savich V.V. Dispersnye i nanodispersnye materialy v meditsine [Dispersed and nanodispersed materials in medicine], Konstruktsii iz kompozitsionnykh materialov [Composite structures], 2006, no. 4, pp. 114-119. (In Russian).
3. Fomin A.A., Steinhauer A.B., Rodionov I.V. et al. Nanostructure of composite bioactive titania coatings modified with hydroxyapatite in medical titanium implants, Biomedical Engineering, 2013, vol. 47, issue 3, pp. 138-141. DOI: 10.1007/s10527-013-9353-6.
4. Tosan F., Rahnama N., Sakhaei D. et al. Effects of doping metal nanoparticles in hydroxyapatite in Improving the physical and chemical properties of dental implants, Nanomedicine Research Journal, 2021, vol. 6, issue 4, pp. 327-336. DOI: 10.22034/NMRJ.2021.04.002.
5. Li Y., Klein C.P.A.T., Zhang X., de Groot K. Relationship between the colour change of hydroxyapatite and the trace element manganese, Biomaterials, 1993, vol. 14, issue 13, pp. 969-972. DOI: 10.1016/0142-9612(93)90187-7.
6. Sobańska Z., Roszak J., Kowalczyk K., Stępnik M. Applications and biological activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo models, Nanomaterials, 2021, vol. 11, issue 5, art. no. 1084, 16 p. DOI: 10.3390/nano11051084.
7. Fujitani W., Hamada Y., Kawaguchi N. et al. Synthesis of hydroxyapatite contining manganese and its evaluation of biocompatibility, Nano Biomedicine, 2010, vol. 2, issue. 1, pp. 37-46. DOI: 10.11344/nano.2.37.
8. Mandal S., Kishore V., Bose M. et al. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy, Journal of Materials Science & Technology, 2021, vol. 84, pp. 159-172. DOI: 10.1016/j.jmst.2020.12.029.
9. Li B., Gu Z., Kurniawan N. et al, Manganese‐based layered double hydroxide nanoparticles as a T1‐MRI contrast agent with ultrasensitive pH response and high relaxivity, Advanced Materials, 2017, vol. 29, issue 29, art. no. 1700373, 8 p. DOI: 10.1002/adma.201700373.
10. Heiden M., Walker E., Nauman E., Stanciu L. Evolution of novel bioresorbable iron–manganese implant surfaces and their degradation behaviors in vitro, Journal of Biomedical Materials Research Part A, 2015, vol. 103, issue 1, pp. 185-193. DOI: 10.1002/jbm.a.35155.
11. Yakimov L.A., Slinyakov L.Yu., Bobrov D.S. et al. Biodegradiruemye implanty. Stanovlenie i razvitie. Preimushchestva i nedostatki (obzor literatury) [Biodegradable implants. formation and development. advantages and drawbacks. (review of literature)], Kafedra travmatologii i ortopedii [Department of Traumatology and Orthopedics], 2017, no. 1 (21), pp. 44-49. (In Russian).
12. Ryzhkova D.A., Gafner S.L., Gafner Yu.Ya. Rol' «magicheskikh» GPU chisel v ustojchivosti vnutrennego stroeniya nanoklasterov Ag89 i Ag153 [Role of «magic» HCP numbers in stability of the internal structure of Ag89 and Ag153 nanoclusters], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 593-603. DOI: 10.26456/pcascnn/2021.13.593. (In Russian).
13. Sdobnyakov N.Yu., Bogdanov S.S., Veselov A.D. et al. Vliyanie razmernogo effekta na zakonomernosti strukturoobrazovaniya v bimetallicheskikh nanochastitsakh Au-Co [Influence of the size effect on the regularities of the structure formation in bimetallic Au-Co nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 612-623. DOI: 10.26456/pcascnn/2021.13.612. (in Russian).
14. Pradhan S., Patra P., Das S. et al. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study, Environmental Science & Technology, 2013, vol. 47, issue 22, pp. 122-131. DOI: 10.1021/es402659t.
15. Q-Chem 6.1 User’s Manual. Available at:https://manual.q-chem.com/latest/ (accessed 02.06.2023).
16. Blinova A.A., Blinov A.V., Pirogov M.A. Komp'yuternoe kvantovo-khimicheskoe modelirovanie vzaimodejstviya fosfata kal'tsiya s aminokislotami [Computer quantum chemical modeling of the interaction of calcium phosphate with amino acids], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 352-361. DOI: 10.26456/pcascnn/2022.14.352. (in Russian).
17. Blinova A.A., Karamirzoev A.A., Guseynova A.R. Synthesis and characterization of calcium silicate nanoparticles stabilized with amino acids, Micromachines, 2023, vol. 14, issue 2, art. no 245, 12 p. DOI: 10.3390/mi14020245.

⇐ Prevoius journal article | Content | Next journal article ⇒