Mathematical modeling of formation of nanocrystalline calcium oxalate under physiological conditions
O.A. Golovanova, V.M. Kiselev
Dostoevsky Omsk State University
DOI: 10.26456/pcascnn/2023.15.950
Original article
Abstract: For the first time, a physicochemical model of the formation of poorly soluble compounds in the kidney nephron was developed on the basis of a mathematical description of the ideal displacement reactor. As a result of mathematical modeling, it was found that under normal physiological conditions, the formation of a solid phase is not the dominant process, which explains the absence of crystalline formations in the kidneys in healthy people. An increase in the concentration of precipitate-forming ions, corresponding to certain conditions of the human body, leads to the occurrence of local high supersaturations in certain areas of the nephron, which can lead to the formation of solid phase nuclei, their fixation and further growth. It is shown that the calculations of material balances, flow movements, as well as the concentration profiles of components in the nephron determine the possibility of predicting the behavior of the model system with variations in the parameters and conditions that affect the course of the crystallization process (concentration, fluid flow, hydrodynamic regime, etc.), which will allow developing effective methods for the prevention and treatment of urolithiasis, including the dissolution of already formed aggregates.
Keywords: crystallization, calcium oxalates, saline, model, plug flow reactor, nephron, material graph
- Olga A. Golovanova – Dr. Sc., Professor, Head of the Department of Inorganic Chemistry, Dostoevsky Omsk State University
- Vladimir M. Kiselev – Ph. D., Researcher, Inorganic Chemistry Department, Dostoevsky Omsk State University
Reference:
Golovanova, O.A. Mathematical modeling of formation of nanocrystalline calcium oxalate under physiological conditions / O.A. Golovanova, V.M. Kiselev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 950-961. DOI: 10.26456/pcascnn/2023.15.950. (In Russian).
Full article (in Russian): download PDF file
References:
1. Babskij E.B., Glebovskij V.D., Kogan A.B. et al. Fiziologiya cheloveka [Human physiology], ed. by G.I. Kositsky, 3rd ed. Moscow, Meditsina Publ., 1985, 544 p.
2. Young B., O'Dowd G., Woodford P. Wheater's functional histology. A text and colour atlas, 6th ed. Philadelphia, PA, Churchill Livingstone, 2013, 464 p.
3. Vander A.J. Renal physiology, 5th ed. New York, McGraw-Hill, Health Professions Division, 1995, 238 p.
4. Golovanova O.A., Gerk S.A., Kuriganova A.N., Izmajlov R.R. Korrelyatsionnye zavisimosti mezhdu fazovym, elementnym i aminokislotnym sostavom fiziogennykh, patogennykh OMA i ikh sinteticheskikh analogov [Correlations between the phase, elemental and amino acid composition of physiogenic, pathogenic OMA and their synthetic analogues], Sistemy. Metody. Tekhnologii [Systems. Methods. Technology], 2012, no. 4 (16), рр. 131-139. (In Russian).
5. Voshchula V.I. Mochekamennaya bolezn': etiotropnoe i patogeneticheskoe lechenie, profilaktika [Urolithiasis: etiotropic and pathogenetic treatment, prevention], Retsept [Recipe], 2007, no. 6(56), pp. 149-159. (In Russian).
6. Gualtieri A.F. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers, Toxicology and Applied Pharmacology, 2018, vol. 361, рр. 89-98. DOI: 10.1016/j.taap.2018.05.012.
7. Conti C., Brambilla L., Colombo C. et al. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy, Physical Chemistry Chemical Physics, 2010, vol. 12, issue 43, рр. 14560-14566. DOI: 10.1039/C0CP00624F.
8. Bazin D., Leroy C., Tielens F. et al. Hyperoxaluria is related to whewellite and hypercalciuria toweddellite: What happens when crystalline conversionoccurs? Comptes Rendus Chimie, 2016, vol. 19, issue 11-12, рр. 1492-1503. DOI: 10.1016/j.crci.2015.12.011.
9. Vaitheeswari S., Sriram R., Brindha P., Kurian G.A. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites, International Brazilian Journal of Urology, 2015, vol. 41, no 3, рр. 503-510. DOI: 10.1590/S1677-5538.IBJU.2014.0193.
10. Abdel-Aal E.A., Yassin A.M.K., El-Shahat M.F. Inhibition of nucleation and crystallisation of kidney stone (calcium oxalate monohydrate) using Ammi Visnaga (khella) plant extract, International Journal of Nano and Biomaterials, 2016, vol. 6, no. 2, рр. 110-126. DOI: 10.1504/IJNBM.2016.10000549.
11. Okumura N., Tsujihata M., Momohara C. et al. Diversity in protein profiles of individual calcium oxalate kidney stones, PLOS One, 2013, vol.8, issue 7, art. no. e68624, 9 p. DOI: 10.1371/journal.pone.0068624.
12. Finkielstein V.A., Goldfarb D.S. Strategies for preventing calcium oxalate stones, Canadian Medical Association Journal., 2006, vol.174, issue 10, рр. 1407-1409. DOI: 10.1503/cmaj.051517.
13. Golovanova O.A. Izuchenie nanokristallicheskikh struktur oksalatov kal'tsiya i kinetiki ikh kristallizatsii [Study of calcium oxalate nanocrystalline structures and kinetics of calcium oxalate deposition], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 61-69. DOI: 10.26456/pcascnn/2022.14.061. (In Russian).
14. Dakhin, O.Kh. Khimicheskie reaktory [Chemical reactors]. Volgograd: RPK «Politekhnik» Publ., 2012, 182 p. (In Russian).
15. Davis M.E., Davis R.J. Fundamentals of chemical reaction engineering, 1st ed. New York, McGraw-Hill Companies, 2002, 384 p.
16. Golovanova O.A., Korol’kov V.V. Thermodynamics and kinetics of calcium oxalate crystallization in the presence of amino acids, Crystallography reports, 2017, vol. 62, issue 5, pp. 787-796. DOI: 10.1134/S1063774517050078.
17. Kafarov V.V., Dorokhov I.N., Koltsova E.M. Sistemnyj analiz protsessov khimicheskoj tekhnologii: massovaya kristallizatsiya [System analysis of chemical technology processes: mass crystallization], ed. by N.M. Zhavoronkov, 2nd ed. Moscow, Yurayt Publishing House, 2018, 368 p. (In Russian).
18. Felmlee M.A., Dave R.A., Morris M.E. Mechanistic models describing active renal reabsorption and secretion: a simulation-based study, The AAPS Journal, 2013, vol. 15, issue 1, pp. 278-287. DOI: 10.1208/s12248-012-9437-3.
19. Golovanova O.A., Kogut V.A., Zhelyaev E.V. Modelirovanie nukleatsii oksalata kal'tsiya [Modeling of calcium oxalate nucleation], Matematicheskie struktury i modelirovanie [Mathematical structures and Modeling], 2003, issue 11. pp. 42-47. (In Russian).
20. Evan A.P., Lingeman J.E., Coe F.L. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle, Journal of Clinical Investigation. 2003. vol. 111. issue 5, pp. 607-616. DOI: 10.1172/JCI17038.
21. Sepe V., Adamo G., La Fianza A. et al. Henle loop basement membrane as initial site for Randall plaque formation, American Journal of Kidney Diseases, 2006, vol. 48, issue 5, pp. 706-711. DOI: 10.1053/j.ajkd.2006.07.021.
22. Linnikov O.D. Mechanism of precipitate formation during spontaneous crystallization of salts from supersaturated aqueous solutions, Russian Chemical Reviews, 2014, vol. 83, issue 4, рр. 343-364. DOI: 10.1070/RC2014v083n04ABEH004399.
23. Nanev C.N. Evaluation of the critical nucleus size without using interface free energy, Journal of Crystal Growth, 2020, vol. 535, art. no. 125521, 3 p. DOI: 10.1016/j.jcrysgro.2020.125521.
24. Gorichev I.G., Izotov A.D., Gorichev A.I. Analiz kineticheskikh dannykh rastvoreniya oksidov metallov s pozitsij fraktal'noj geometrii [Analysis of the kinetic data of the dissolution of metal oxides from the standpoint of fractal geometry], Zhurnal fizicheskoj khimii [Russian Journal of Physical Chemistry A], 1999, vol.71, no. 10, рр. 1802-1808. (In Russian).