Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Study of the possibility of obtaining biocomosites based on nanoscale hydroxyapatite with metals and biogenic elements

E.A. Bogdanova, V.M. Skachkov

Institute of Solid State Chemistry of the Ural Branch of RAS

DOI: 10.26456/pcascnn/2023.15.649

Original article

Abstract: The article discusses the possibility of obtaining a hardened composite material with a porous structure based on nanostructured hydroxyapatite (HAP) synthesized by precipitation from a solution. The new material by the mechanochemical synthesis of hydroxyapatite with aluminum, silicon, nickel, hafnium and titanium was obtained. The synthesized samples are certified using modern physico-chemical methods of analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes and the strength characteristics of the studied samples is shown. It has been experimentally established that the system Ca10(PO4)6(OH)2 – Ti is the most promising for the development of biocomposites based on it. Composite materials of this composition with the content of the doping component (10-20 wt.%), have a dense uniform structure with a high degree of crystallinity, with developed porosity, are a promising material for further research in order to introduce it into medical practice. A patent application has been filed for the developed composite material.

Keywords: hydroxyapatite, titanium, sintering, composite biomaterials, crystallinity, microhardness

  • Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratories of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratories of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Bogdanova, E.A. Study of the possibility of obtaining biocomosites based on nanoscale hydroxyapatite with metals and biogenic elements / E.A. Bogdanova, V.M. Skachkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 649-658. DOI: 10.26456/pcascnn/2023.15.649. (In Russian).

Full article (in Russian): download PDF file

References:

1. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
2. Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications, Materials Science and Engineering: C, 2015, vol. 55, pp. 272-326. DOI: 10.1016/j.msec.2015.05.033.
3. Tadic D., Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 2004, vol. 25, issue 6, pp. 987-994. DOI: 10.1016/S0142-9612(03)00621-5.
4. Glazov I.E., Krutko V.K., Vlasov R.A. et al. Osazhdenie gibridnykh nanokompozitov gidroksiapatit / autofibrin v slaboshchelochnoj srede [Precipitation of hybrid hydroxyapatite / autofibrin nanocomposites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 818-828. DOI: 10.26456/pcascnn/2021.13.818. (In Russian)
5. Golovanova O.A. Kristallizatsiya nanokristallicheskogo gidroksilapatita v prisutstvii al'bumina [Crystallization of nanocrystalline hydroxyapatite in the presence of albumin], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 71-81. DOI: 10.26456/pcascnn/2022.14.071. (In Russian)
6. Krutko V.K., Maslova L.Yu., Musskaya O.N., Kulak A.I. Kompozity na osnove kal'tsijfosfatnoj penokeramiki i gelya gidroksiapatita [Composites based on calcium phosphate ceramic foam and hydroxyapatite gel], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 791-799. DOI: 10.26456/pcascnn/2022.14.791. (In Russian)
7. Permiakov N.V., Lebedeva A.I., Maraeva E.V. Sozdanie i issledovanie materiala na osnove gidroksiapatita i polikaprolaktona dlya ekstruzionnoj trekhmernoj pechati [Obtainanig and study of the material based on hydroxyapatite and polycaprolactone for extrusion three-dimensional printing], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 838-844. DOI: 10.26456/pcascnn/2022.14.838. (In Russian)
8. Kim H-W., Noh Y-J., Koh Y-H., Kim H-E., Kim H-M. Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications, Biomaterials, 2002, vol. 23, issue 20, pp. 4113-4121. DOI: 10.1016/s0142-9612(02)00150-3.
9. Krut’ko V.K., Maslova L.Yu., Musskaya O.N., Kulak A.I. Kompozity na osnove kal'tsijfosfatnoj penokeramiki i gelya gidroksiapatita [Composites based on calcium phosphate foam ceramic and hydroxyapatite gel], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 791-799. DOI: 10.26456/pcascnn/2022.14.791. (In Russian).
10. Bogdanova E.A., Skachkov, Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s soedineniyami titana [Preparation of biocomposites based on nanoscale hydroxyapatite with titanium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 521-530. DOI: 10.26456/pcascnn/2022.14.521. (In Russian).
11. Bogdanova E.A., Skachkov, Nefedova K.V. Razrabotka kompozitsionnykh smesej na osnove gidroksiapatita i biogennykh elementov dlya formirovaniya bioaktivnykh pokrytij [Development of composite mixtures based on hydroxyapatite and biogenic elements for the formation of bioactive coatings], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 771-780. DOI: 10.26456/pcascnn/2022.14.771. (In Russian).
12. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
13. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.
14. Bogdanova E.A., Giniyatullin I.М., Pereverzev D.I., Razgulyaeva V.М. Vliyanie armiruyushchikh dobavok na protsessy spekaniya i uprochneniya nanorazmernogo gidroksiapatita [Influence of reinforcement additives on sintering and hardening processes of nanoscale hydroxyapatite], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 548-554. DOI: 10.26456/pcascnn/2019.11.548. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒