Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Planar jet printing of localized Ni/P(VDF-TrFE)/Ni structures for piezo- and pyroelectric matrixes

A.N. Belov1, N.V. Vostrov2, G.N. Pestov1, A.V. Solnyshkin2

1 National Research University of Electronic Technology
2 Tver State University

DOI: 10.26456/pcascnn/2023.15.637

Original article

Abstract: This paper describes manufacturing the film structures based on a polar copolymer of poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) using the process of drop-by-drop local deposition on metallized substrates. The produced samples were a crossbar structures of arrays of ferroelectric P(VDF-TrFE) microislands metallized with nickel stripes using a combined 2D printing method. For the polymer layer deposition, a number of solvents with different viscosities and dipole moments of molecules were considered, and their influence on the geometry and the polar properties of printed layers was shown. Using the piezoelectric force microscopy, the value of the piezoelectric modulus of d33 at the nanoscale level was determined. This d33 modulus is similar to values of d33 for P(VDF-TrFE) films produced by the standard solvent cast method. On the base of amplitude of the pyroelectric current in the dynamic method, the value of the pyroelectric coefficient (p) was determined, varying from 2⋅10–5 to 4⋅10–5 C/(m2⋅K). These values are comparable to the pyroelectric coefficient of films P (VDF-TrFE) produced by the standard method. The highest values of d33 and p correspond to structures produced from solutions containing more than 20% of propylene carbonate in the initial solvent, the molecules of which have a large (4,9 D) dipole moment.


  • Aleksey N. Belov – Dr. Sc., Professor, Integrated Electronics and Microsystems Department, National Research University of Electronic Technology
  • Nikita V. Vostrov – Junior Researcher, Management of Scientific Research, Tver State University
  • Grigory N. Pestov – assistant, Integrated Electronics and Microsystems Institute, National Research University of Electronic Technology
  • Alexander V. Solnyshkin – Dr. Sc., Professor, Condensed Matter Physics Department, Tver State University


Belov, A.N. Planar jet printing of localized Ni/P(VDF-TrFE)/Ni structures for piezo- and pyroelectric matrixes / A.N. Belov, N.V. Vostrov, G.N. Pestov, A.V. Solnyshkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 637-648. DOI: 10.26456/pcascnn/2023.15.637. (In Russian).

Full article (in Russian): download PDF file


1. Zouraraki O., Bakopoulos P., Vyrsokinos K., Avramopoulos H. 2x2 bismuth-oxide-fiber based crossbar switch for all-optical switching architectures, Optical Network Design and Modeling, ONDM 2007, Lecture Notes in Computer Science, 2007, vol. 4534, pp. 21-28. DOI: 10.1007/978-3-540-72731-6_3.
2. Wu Y., Liu L., Wang Z. Optical crossbar elements used for switching networks, Applied Optics, 1994, vol. 33, issue 3, pp. 175-178. DOI: 10.1364/AO.33.000175.
3. Kätelhön E., Mayer D., Banzet M. et al. Nanocavity crossbar arrays for parallel electrochemical sensing on a chip, Beilstein Journal of Nanotechnology, 2014, vol. 5, pp. 1137-1143. DOI: 10.3762/bjnano.5.124.
4. Kim H., Mahmoodi M.R., Nili H., Strukov D.B. 4K-memristor analog-grade passive crossbar circuit, Nature Communications, 2021, vol. 12, art. no. 5198, 11 p. DOI:10.1038/s41467-021-25455-0.
5. Solnyshkin A.V., Morsakov I.M., Bogomolov A.A. et al. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate, Applied Physics A, 2015, vol. 121, issue 1, pp. 311-316. DOI: 10.1007/s00339-015-9446-z.
6. Badano L.P. The clinical benefits of adding a third dimension to assess the left ventricle with echocardiography, Scientifica, 2014, vol. 2014, art. no. 897431, 18 p. DOI: 10.1155/2014/897431.
7. Hurrell A., Duck F. A two-dimensional hydrophone array using piezoelectric PVDF, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000, vol. 47, issue 6, pp. 1345-1353. DOI: 10.1109/58.883523.
8. Hammes P.C.A., Regtien P.P.L., Sarro P.M. A pyroelectric matrix sensor using PVDF on silicon containing FET readout circuitry, Sensors and Actuators A: Physical, 1993, vol. 37-38, pp. 290-295. DOI: 10.1016/0924-4247(93)80049-M.
9. Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions, 1989, vol. 18, issue 3-4, pp. 143-211. DOI: 10.1080/01411598908206863.
10. Nalwa H.S. Recent development in ferroelectric polymers, Journal of Macromolecular Science, Part C, 1991, vol. 31, issue 4, pp. 341-432. DOI: 10.1080/15321799108021957.
11. Belov A.N., Kislova I.L., Loktev D.V. et al. Electrical characterization of poly(vinylidene fluoridetrifluoroethylene) nanocrystals embedded in porous alumina matrix, Journal of Advanced Dielectrics, 2018, vol. 8, issue 1, art. no. 1820001, 5 p. DOI: 10.1142/S2010135X18200011.
12. Roopaa T.S., Narasimha Murthy H.N., Praveen Kumar V.V., Krishna M. Development and Characterization of PVDF Thin Films for pressure sensors, Materials Today: Proceedings, 2018, vol. 5, issue 10, part 1, pp. 21082-21090. DOI: 10.1016/j.matpr.2018.06.503.
13. Aryanti P., Trilaksono G., Hotmaida A. et al. Preparation of Polypropylene/PVDF Composite Membrane by Dip-Coating Method, IOP Conference Series: Materials Science and Engineering, 2021, vol. 1115, art. no. 012028, 9 p. DOI: 10.1088/1757-899X/1115/1/012028
14. He S., Guo M., Dan Z. et al. Large-area atomic-smooth polyvinylidene fluoride Langmuir-Blodgett film exhibiting significantly improved ferroelectric and piezoelectric responses, Science Bulletin, 2021, vol. 66, issue 11, pp. 1080-1090. DOI: 10.1016/j.scib.2021.02.004.
15. Naber R.C.G., Tanase C., Blom P.W.M. et al. High-performance solution-processed polymer ferroelectric field-effect transistors, Nature Materials, 2005, vol. 4, pp. 243-248. DOI: 10.1038/nmat1329.
16. Xu H., Fang X., Liu X. et al. Fabrication and properties of solution processed all polymer thin-film ferroelectric device, Journal of Applied Polymer Science, 2011, vol. 120. issue 3, pp. 1510-1513. DOI: 10.1002/app.33291.
17. Hon K.K.B., Li L., Hutchings I.M. Direct writing technology-advances and developments, CIRP Annals, 2008, vol. 57, issue 2, pp. 601-620. DOI: 10.1016/j.cirp.2008.09.006.
18. Vostrov N.V., Solnyshkin A.V., Morsakov I.M. et al. Issledovanie fizicheskikh svojstv tonkikh plenok PVDF, izgotovlennykh metodom 4D-pechati [Investigation of the physical properties of PVDF thin films obtained by 4D printing g], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 561-571. (In Russian) DOI: 10.26456/pcascnn/2022.14.561.
19. Haque R.I., Vié R., Germainy M. et al. Inkjet printing of high molecular weight PVDF-TrFE for flexible electronics, Flexible and Printed Electronics, 2016, vol. 1, no. 1, art. no. 015001, 12 p. DOI 10.1088/2058-8585/1/1/015001
20. He L., Lu J., Han C. et al. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized β-PVDF arrays for advanced piezoelectric sensing, Small, 2022, V. 18, issue 15, art. no. 2200114, 10 p. DOI: 10.1002/smll.202200114.
21. Demidov Y.A., Pestov G.N., Sagunova I.V. et al. 2D-printing Features of Metal, Semiconductor and Insulator Local Layers on Substrate, 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 27-30 January 2020, St. Petersburg and Moscow: proceedings, St. Petersburg, Moscow, IEEE, 2020, pp. 2127-2130. DOI: 10.1109/EIConRus49466.2020.9039339.
22. Omote K., Ohigashi H., Koga K. Temperature dependence of elastic, dielectric, and piezoelectric properties of «single crystalline» films of vinylidene fluoride trifluoroethylene copolymer, Journal of Applied Physics, 1997, vol. 81, issue 6, pp. 2760-2769. DOI: 10.1063/1.364300.
23. Hu X., You M., Yi N. et al. Enhanced piezoelectric coefficient of PVDF-TrFE films via in situ polarization, Frontiers in Energy Research, 2021, vol. 9, art. no. 621540, 7 p. DOI: 10.3389/fenrg.2021.621540.
24. Solnyshkin A.V., Morsakov I.M., Zavjalov A.I. et al. Pyroelectric effect and piezoelectric properties of composites based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and deuterated triglycine sulfate, Ferroelectrics, 2023, vol. 612, issue 1, pp. 137-143. DOI: 10.1080/00150193.2023.2211299.

⇐ Prevoius journal article | Content | Next journal article ⇒