Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method

N.Yu. Sdobnyakov, A.Yu. Kolosov, D.N. Sokolov, K.G. Savina, A.N. Bazulev, S.A. Veresov, S.V. Serov

Tver State University

DOI: 10.26456/pcascnn/2023.15.589

Original article

Abstract: The melting and crystallization phase transitions in the five-component metallic Au-Ag-Cu-Pd-Pt equiatomic nanosystem were investigated. The complex approach to atomistic modeling is due to the use of alternative methods of computer simulation – the molecular dynamics and Monte Carlo methods. The interatomic interactions were described by the tight-binding potential. According to the results of a series of computer experiments, it was established that five-component nanoparticles of equiatomic composition can form crystalline phases during cooling. Melting and crystallization temperatures for the investigated five-component nanoparticles were determined. The values obtained by alternative methods are in good agreement. For five-component nanoparticles, the concept of fixing the temperatures corresponding to the beginning and end of the phase transition process is confirmed. The metals that make up five-component nanoparticles, the atoms of which in the process of crystallization form the central part of the nanoparticle (core) and the peripheral regions, including the surface of the nanoparticle, are determined.

Keywords: molecular dynamics method, Monte Carlo method, tight binding potential, five-component nanoparticles, structure formation, melting point, crystallization temperature

  • Nikolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
  • Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
  • Kseniya G. Savina – 1st year postgraduate student, General Physics Department, Tver State University
  • Anatolii N. Bazulev – Ph. D., Docent, General Physics Department, Tver State University
  • Sergey A. Veresov – 2nd year postgraduate student, General Physics Department, Tver State University
  • Sergei V. Serov – 1st year graduate student, General Physics Department, Tver State University

Reference:

Sdobnyakov, N.Yu. Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method / N.Yu. Sdobnyakov, A.Yu. Kolosov, D.N. Sokolov, K.G. Savina, A.N. Bazulev, S.A. Veresov, S.V. Serov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 589-601. DOI: 10.26456/pcascnn/2023.15.589. (In Russian).

Full article (in Russian): download PDF file

References:

1. Shajsultanov D.G. Struktura i mekhanicheskie svojstva vysokoentropijnykh splavov sistemy CoCrFeNiX (X=Mn, V, Mn i V, Al i Cu) [Structure and mechanical properties of high-entropy alloys of the CoCrFeNiX system (X=Mn, V, Mn and V, Al and Cu)], Cand. tech. sci. diss.: 05.16.01, – Belgorod, UFU Publ., 2015, 142 p. (In Russian).
2. Rogachev A.S. Structure, stability, and properties of high-entropy alloys, The Physics of Metals and Metallography, 2020, vol. 121, issue 8, pp. 733-764. DOI: 10.1134/S0031918X20080098.
3. Poliakov M., Kovalev D., Vadchenko S. et al. Amorphous/nanocrystalline high-entropy CoCrFeNiTix thin films with low thermal coefficient of resistivity obtained via magnetron deposition, Nanomaterials, 2023, vol. 13, issue 13, art. № 2004, 15 p. DOI: 10.3390/nano13132004.
4. Barbero A., Da Silva C.M., Pena N.O. et al. Synthesis and structural properties of high-entropy nanoalloys made by physical and chemical routes, Faraday Discussions, 2023, vol. 242, pp. 129-143. DOI: 10.1039/D2FD00118G.
5. Ryltsev R.E., Chtchelkatchev N.M. Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability, Journal of Molecular Liquids, 2022, vol. 349, art. no. 118181. DOI: 10.1016/j.molliq.2021.118181.
6. Balyakin I.A., Yuryev A.A., Gelchinski B.R., Rempel A.A. Ab initio molecular dynamics and highdimensional neural network potential study of VZrNbHfTa melt, Journal of Physics: Condensed Matter, 2020, vol. 32, no. 21, art. № 214006, 15 p. DOI: 10.1088/1361-648X/ab6f87.
7. Balyakin I.A., Rempel A.A. Atomistic calculation of the melting point of the high-entropy cantor alloy CoCrFeMnNi, Doklady Physical Chemistry, 2022. vol. 502, issue 1, pp. 11-17. DOI: 10.1134/S0012501622010018.
8. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
9. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
10. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni–Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
11. Myasnichenko V.S., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Modelirovanie protsessov strukturoobrazovaniya v bimetallicheskikh nanosplavakh razlichnogo sostava [Modeling of processes of structure formation in bimetallic nanoalloys of different composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 323-329. DOI: 10.26456/pcascnn/2017.9.323. (In Russian).
12. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
13. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
14. Samsonov V.M., Bembel A.G., Shakulo O.V. O fazovykh perekhodakh pervogo roda v klasterakh nikelya [On first-order phase transitions in nickel clusters], Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Fizika [Bulletin of the Tver State University. Series: Physics], 2011, issue 13, pp. 82-93. (In Russian).
15. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371.
16. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
17. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
18. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, 1984, vol. 29, issue 12, pp. 6443-6453. DOI: 10.1103/PhysRevB.29.6443.
19. Samsonov V.M., Talyzin I.V., Vasilyev S.A. et. al. On surface pre‑melting of metallic nanoparticles: molecular dynamics study, Journal of Nanoparticle Research, 2023, vol. 25, issue 6, art. no. 105, 15 p. DOI: 10.1007/s11051-023-05743-0.
20. Suliz K.V., Kolosov A.Yu., Myasnichenko V.S. et al Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires, Advanced Powder Technology, 2022, vol. 33, issue 3, art. № 103518, 15 p. DOI: 10.1016/j.apt.2022.103518.
21. Talyzin I.V., Samsonov V.M., Bogdanov S.S. et al. Identifikatsiya slozhnykh nanostruktur yadro-obolochka po radial'nym raspredeleniyam lokal'noj plotnosti komponentov [Identification of complex core-shell nanostructures from the radial distributions of the local density of components], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 307-320. DOI: 10.26456/pcascnn/2022.14.307. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒