Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Surface melting in nanoparticles and nanosystems. 2. Scientific and nanotechnological aspects of the role of surface melting in nanoparticles and nanosystems

V.V. Samsonov, S.A. Vasilyev, I.V. Talyzin, V.V. Puitov

Tver State University

DOI: 10.26456/pcascnn/2023.15.571

Original article

Abstract: Taking into account results of our molecular dynamics experiments, we have concluded thatof the three  commonly considered alternative models of nanoparticle melting (homogeneous melting, liquid shell, nucleation of liquid and growth), the latter is the most adequate. At the same time, a more adequate model corresponds to a combination of continuous melting at the initial stage of the process with its subsequent abrupt completion. In other words, nucleation and growth of a liquid-like surface layer occur until a certain critical radius of the crystalline core of the particle is reached, and then melting is completed very quickly, almost abruptly (in fractions of a nanosecond) at a temperature interpreted as the nanoparticle melting temperature Tm. Then, the role of surface melting in nanoparticle sintering is discussed. According to our results, the sintering of metal nanoparticles at high temperatures cannot be reduced to a single mechanism: a certain role play surface melting, surface and bulk diffusion, deformation in the contact zone, and collective effects associated with the displacements of groups (clusters) of atoms rather than of individual atoms. We also have put forward and substantiated the hypothesis that the previously introduced redetermined Tamman temperature TT=0,5Tm corresponds to the switching of the scenario of sintering of metal nanoparticles from formation of a dumbbell-shaped nanocrystal at low temperatures to the scenario corresponding to coalescence of solid nanoparticles resulting in the formation of a defective nanocrystal of a shape close to spherical.

Keywords: surface melting, metal nanoparticles, melting mechanisms, coalescence and sintering, molecular dynamics, thermodynamics

  • Vladimir V. Samsonov – Dr. Sc., Full Professor, General Physics Department, Tver State University
  • Sergey A. Vasilyev – Ph. D., Docent, Applied Physics Department, Researcher, Management of Scientific Research, Tver State University
  • Igor V. Talyzin – Ph. D., Researcher, Management of Scientific Research, Tver State University
  • Vladimir V. Puitov – Laboratory Assistant, Management of Scientific Research, Tver State University

Reference:

Samsonov, V.V. Surface melting in nanoparticles and nanosystems. 2. Scientific and nanotechnological aspects of the role of surface melting in nanoparticles and nanosystems / V.V. Samsonov, S.A. Vasilyev, I.V. Talyzin, V.V. Puitov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 571-588. DOI: 10.26456/pcascnn/2023.15.571. (In Russian).

Full article (in Russian): download PDF file

References:

1. Samsonov V.M., Vasiliev S.A., Talyzin I.V. et al. Poverkhnostnoe plavlenie v nanochastitsakh i nanosistemakh. 1. Zakonomernosti i mekhanizmy poverkhnostnogo plavleniya makroskopicheskikh faz i nanochastits [Surface melting in nanoparticles and nanosystems. 1. Regularities and mechanisms of surface melting of macroscopic phases and nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 554-570. DOI: 10.26456/pcascnn/2023.15.554. (In Russian).
2. Dash J.G. History of the search for continuous melting, Reviews of Modern Physics, 1999, vol. 71, issue 5, pp. 1737-1743. DOI: 10.1103/RevModPhys.71.1737.
3. Petrov Yu.I. Fizika malykh chastits [Physics of small particles], Moscow, Nauka Publ., 1982, 359 p. (In Russian).
4. Pawlow P. Über die abhängigkeit des schmelzpunktes von der oberflächenenergie eines festen körpers (Zusatz), Zeitschrift Für Physikalische Chemie, 1909, vol. 65u, issue 1, pp. 545-548. DOI: 10.1515/zpch-1909-6532.
5. Samsonov V.M., Bembel A.G., Shakulo O.V., Vasilyev S.A. Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters, Crystallography Reports, 2014, vol. 59, issue 4, pp. 580-585. DOI: 10.1134/s1063774514040166.
6. Samsonov V.M., Vasilyev S.A., Bembel A.G. et al. Molecular dynamics investigation of the size dependence of the heat of melting of metal nanoclusters, Physics of the Solid State, 2014, vol. 56, issue 12, pp. 2369-2373. DOI: 10.1134/s1063783414120270.
7. Samsonov V.M., Sdobnyakov N.Yu., Bembel A.G. et al. Kompleksnyy podkhod k komp'yuternomu modelirovaniyu plavleniya i kristallizatsii nanoklasterov zolota [A complex approach to computer simulation of melting and crystallization of gold nanoclusters], Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta «MIFI» [Bulletin of the National Research Nuclear University «MIFI»], 2013, vol. 2, issue 4, pp. 448-451. DOI: 10.1134/S2304487X13040160. (In Russian).
8. Samsonov V.M, Talyzin I.V., Vasilyev S.A. et al. Kompleksnoe primenenie atomisticheskogo i termodinamicheskogo modelirovaniya k issledovaniyu razmernoj zavisimosti temperatury plavleniya metallicheskikh nanochastits [Combined application of atomistic and thermodynamic simulations to investigation of size dependence of the melting temperature of metal nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 411-421. DOI: 10.26456/pcascnn/2017.9.411.
9. Samsonov V.M., Sdobnyakov N.Y., Vasilyev S.A. et al. On the size dependence of the heats of melting of metal nanoclusters, Bulletin of the Russian Academy of Sciences: Physics, 2016, vol. 80, issue 5, pp. 494-496. DOI: 10.3103/s1062873816050166.
10. Samsonov V.M., Vasilyev S.A., Talyzin I.V. et al. On reasons for the hysteresis of melting and crystallization of nanoparticles, JETP Letters, 2016, vol. 103, issue 2, pp. 94-99. DOI: 10.1134/S0021364016020119.
11. Samsonov V.M., Bembel A.G., Vasilyev S.A. Molecular dynamics simulation of melting and freezing of gold nanoclusters, Proceedings of the international conference nanomaterials: applications and properties, 2013, vol. 2, issue 2, art. no. 02PCN11, 3 p.
12. Samsonov V.M., Kharechkin S.S., Gafner S.L. et al. Molecular dynamics study of the melting and crystallization of nanoparticles, Crystallography Reports, 2009, vol. 54, issue 3. pp. 526-531. DOI: 10.1134/s1063774509030250.
13. Samsonov V.M., Kharechkin S.S., Gafner S.L. et al. On structural transitions in nanoparticles, Bulletin of the Russian Academy of Sciences: Physics, 2010, vol. 74, issue 5, pp. 673-676. DOI: 10.3103/s1062873810050254.
14. Sdobnyakov N.Y., Komarov P.V., Sokolov D.N. et al. Study of the thermodynamic characteristics of gold nanoclusters using a Gupta many-body potential, The Physics of Metals and Metallography, 2011, vol. 111, issue 1, pp. 13-20. DOI: 10.1134/s0031918x11010121.
15. Samsonov V.M., Vasilyev S.A., Nebyvalova K.K. et al. Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters, Journal of Nanoparticle Research, 2020, vol. 22, issue 8, art. no. 247, 15 p. DOI: 10.1007/s11051-020-04923-6.
16. Qi Y., Çağin T., Johnson W.L. et al. Melting and crystallization in Ni nanoclusters: The mesoscale regime, The Journal of Chemical Physics, 2001, vol. 115, issue 1, pp. 385-394. DOI: 10.1063/1.1373664.
17. Song P. Experimental and numerical study of nanoparticles for potential energy applications, A thesis submitted for the degree of Doctor of Philosophy, London, University of London, 2010, 320 p.
18. Buffat Ph., Borel J.P. Size effect on the melting temperature of gold particles, Physical Review A, 1976, vol. 13, issue 6, pp. 2287-2298. DOI: 10.1103/PhysRevA.13.2287.
19. Castro T., Reifenberger R., Choi E., Andres R.P. Size-dependent melting temperature of individual nanometer-sized metallic clusters, Physical Review B, 1990, vol. 42, issue 13, pp. 8548-8556. DOI: 10.1103/physrevb.42.8548.
20. Dick K., Dhanasekaran T., Zhang Zh. et al. Size-dependent melting of silica-encapsulated gold nanoparticles, Journal of the American Chemical Society, 2002, vol. 124, issue 10, pp. 2312-2317. DOI: 10.1021/ja017281a.
21. Duan H., Xue Y., Cui Z. et al. Influence of size on melting thermodynamics of nanoparticles: mechanism, factors, range, and degree, Particle & Particle Systems Characterization, 2018, vol. 35, issue 8, art. no. 1800156, 8 p. DOI: 10.1002/ppsc.201800156.
22. Foster D.M., Pavloudis T., Kioseoglou J. et al. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon, Nature Communications, 2019, vol. 10, issue 1, art. no. 2583, 8 p. DOI: 10.1038/s41467-019-10713-z.
23. Delgado-Callico L., Rossi K., Pinto-Miles R. et al. A universal signature in the melting of metallic nanoparticles, Nanoscale, 2021, vol. 13, issue 2, pp. 1172-1180. DOI: 10.1039/d0nr06850k.
24. Zeni C., Rossi K.; Pavloudis T. et al. Data-driven simulation and characterisation of gold nanoparticle melting, Nature Communications, 2021, vol. 12, art. no. 6056, 8 p. DOI: 10.1038/s41467-021-26199-7.
25. Samsonov V.M., Talyzin I.V., Puytov V.V. et al. When mechanisms of coalescence and sintering at the nanoscale fundamentally differ: Molecular dynamics study, The Journal of Chemical Physics, 2022, vol. 156, issue 21, art.no. 214302, 52 p. DOI: 10.1063/5.0075748.
26. Nanda K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model, Indian Academy of Sciences, 2009, vol. 72, issue 4, pp. 617-628. DOI: 10.1007/s12043-009-0055-2.
27. Suliz K.V., Kolosov A.Yu., Myasnichenko V.S., et al. Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires, Advanced Powder Technology, 2022, vol. 33, issue 3, art. no. 103518, 15 p. DOI: 10.1016/j.apt.2022.103518.
28. Sdobnyakov N., Khort A., Myasnichenko V. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles, Computational Materials Science, 2020, vol. 184, – art. no. 109936, 12 p. DOI: 10.1016/j.commatsci.2020.109936.
29. Dai Y., Lu P., Cao Z. et al. The physical chemistry and materials science behind sinter-resistant catalysts Chemical Society Reviews, 2018, vol. 47, issue 12, pp. 4314-4331. DOI: 10.1039/c7cs00650k.
30. Andriyevskiy R.A. Osnovy nanostrukturnogo materialovedeniya. Vozmozhnosti i perspektivy [Fundamentals of nanostructural materials science. Opportunities and prospects], Moscow, Binom Publ., 2012, 255 p. (In Russian).
31. Peters К.F., Cohen J.В., Chung Y.-W. Melting of Pb nanocrystals, Physical Review B, 1998, vol. 57, issue 21, pp. 13430-13438. DOI: 10.1103/physrevb.57.13430.
32. Wronski C.R.W. The size dependence of the melting point of small particles of tin, British Journal of Applied Physics, 1967, vol. 18, no. 12, pp. 1731-1737. DOI: 10.1088/0508-3443/18/12/308.
33. Samsonov V.M., Talyzin I.V., Vasilyev S.A. et al. On surface pre-melting of metallic nanoparticles: molecular dynamics study, Journal of Nanoparticle Research, 2023, vol. 25, issue 6, art. no. 105. DOI: 10.1007/s11051-023-05743-0.
34. Liang T., Zhou D., Wu Z., Shi P. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study, Nanotechnology, 2017, vol. 28, issue 48, art. no. 485704, 19 p. DOI: 10.1088/1361-6528/aa92ac.
35. Kofman R., Cheyssac P., Lereah Y., Stella A. Melting of clusters approaching 0D, The European Physical Journal D., 1999, vol. 9, issue 1, pp. 441-444. DOI: 10.1007/s100530050475.
36. Puytov V.V., Romanov A.A., Talyzin I.V., Samsonov V.M. Features and mechanisms of coalescence of nanodroplets and sintering of metal nanoparticles: molecular dynamics simulation, Russian Chemical Bulletin, 2022, vol. 71, issue 4, pp. 686-693. DOI: 10.1007/s11172-022-3466-6.
37. Samsonov V.M., Talyzin I.V., Vasilyev S.A., Alymov M.I. On the mechanisms of coalescence of nanodroplets and sintering of solid particles, Colloid Journal, 2020, vol. 82, issue 5, pp. 573-583. DOI: 10.1134/S1061933X20050154.
38. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
39. Samsonov V.M., Bembel A.G., Pushkar M.Yu. Komp'yuternaya programma dlya molekulyarnodinamicheskogo modelirovaniya nanoklasterov [Computer program for molecular dynamics simulation of nanoclusters]. Certificate RF, no. 2013610101, 2013. (In Russian).
40. Sambles J.R. An electron microscope study of evaporating gold particles: Kelvin equation for liquid gold and the lowering of melting point of solid gold particles, Proceedings of The Royal Society A, 1971, vol. 324, issue 1558, pp. 339-351. DOI: 10.1098/rspa.1971.0143.
41. Yuk J.M., Jeong M., Kim S.Y. et al. In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration, Chemical Communications, 2013, vol. 49, issue 98, pp. 11479-11481. DOI: 10.1039/c3cc46545d.
42. Surrey A., Pohl D., Schultz L. et al. quantitative measurement of the surface self-diffusion on Au nanoparticles by aberration-corrected transmission electron microscopy, Nano Letters, 2012, vol. 12, issue 12, pp. 6071-6077. DOI: 10.1021/nl302280x.
43. Alymov M.I., Timofeev A.A., Gnedovets A.G. Coagulation of gold nanoparticles in thin amorphous films under irradiation with a fast electron beam, Nanotechnologies in Russia, 2013, vol. 8, issue 11-12, pp. 727-736. DOI: 10.1134/s1995078013060037.
44. Samsonov V.M., Bembel A.G., Popov I.V. et al. Solid-state wetting at the nanoscale: molecular dynamics and surface diffusion approach, Surface Innovations, 2017, vol. 5, issue 3, pp. 161-169. DOI: 10.1680/jsuin.17.00015.
45. Bolesta A.V., Golovnev I.F., Fomin V.M. Plavleniye na kontakte pri soudarenii klastera nikelya s zhestkoy stenkoy [Melting at a contact upon collision of a nickel cluster with a rigid wall], Fizicheskaya mezomekhanika [Physical Mesomechanics], 2001, vol. 4, issue 1, pp. 5-10. (In Russian).
46. Samsonov V.M., Talyzin I.V., Puitov V.V., Vasilyev S.A. O probleme primeneniya kontseptsii temperatury Tammana k nanorazmernym ob"ektam: k 160-letiyu Gustava Tammana [To the problem of applicability of the Tamman temperature concept to nanosized objects: to the 160th anniversary of Gustav Tamman], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 503-512. DOI: 10.26456/pcascnn/2021.13.503.
47. Chernyshev A.P. Effect of nanoparticle size on the onset temperature of surface melting, Materials Letters, 2009, vol. 63, issue 17, pp. 1525-1527. DOI: 10.1016/j.matlet.2009.04.009.

⇐ Prevoius journal article | Content |