Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Surface melting in nanoparticles and nanosystems. 1. Regularities and mechanisms of surface melting of macroscopic phases and nanoparticles

V.M. Samsonov, I.V. Talyzin, S.A. Vasilyev, V.V. Puitov

Tver State University

DOI: 10.26456/pcascnn/2023.15.554

Original article

Abstract: Being the first part of a two-part series, published in this issue of the journal, this paper combines a brief overview of theoretical and experimental studies, as well as the results of atomistic simulations of surface melting in bulk bodies and nanoparticles with presentation of our own molecular dynamics results. We have studied the patterns and mechanisms of surface melting in metal nanoparticles (gold, silver, copper, lead and nickel). The patterns and mechanisms of this phenomenon were studied in most detail on gold and silver nanoparticles. It has been established that the effect of surface premelting is characteristic for nanoparticles of all the above metals, although with decreasing particle size this effect manifests itself to a lesser extent. In addition, our molecular dynamics results do not confirm theoretical predictions of some authors about the existence of a quite definite characteristic (critical) radius of nanoparticles, below which the effect of surface melting is completely absent.

Keywords: surface melting (premelting), metal nanoparticles, molecular dynamics, embedded atom method, LAMMPS

  • Vladimir M. Samsonov – Dr. Sc., Full Professor, General Physics Department, Tver State University
  • Igor V. Talyzin – Ph. D., Researcher, Management of Scientific Research, Tver State University
  • Sergey A. Vasilyev – Ph. D., Docent, Applied Physics Department, Researcher, Management of Scientific Research, Tver State University
  • Vladimir V. Puitov – Laboratory Assistant, Management of Scientific Research, Tver State University

Reference:

Samsonov, V.M. Surface melting in nanoparticles and nanosystems. 1. Regularities and mechanisms of surface melting of macroscopic phases and nanoparticles / V.M. Samsonov, I.V. Talyzin, S.A. Vasilyev, V.V. Puitov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 554-570. DOI: 10.26456/pcascnn/2023.15.554. (In Russian).

Full article (in Russian): download PDF file

References:

1. Dash J.G. Surface melting, Contemporary Physics, 1989, vol. 30, issue 2, pp. 89-100. DOI: 10.1080/00107518908225509.
2. Dash J.G. History of the search for continuous melting, Reviews of Modern Physics, 1999, vol. 71, issue 5, pp. 1737-1743. DOI: 10.1103/RevModPhys.71.1737.
3. Bazarov I.P. Termodinamika. Uchebnik dlya vuzov [Thermodynamics. Textbook for high schools], 4th ed., Moscow, Vysshaya Shkola Publ., 1991, 376 p. (In Russian).
4. Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. Tom 5, Chast’ 1: Statisticheskaya fizika [Theoretical physics. Vol. 5, Part 1: Statistical physics]. Moscow: Fizmatlit Publ., 2002, 616 p.
5. Lifshitz E.M. Izbrannyye trudy. Fizika real'nykh kristallov i neuporyadochennykh system [Selected works. Physics of real crystals and disordered systems], Moscow. Nauka Publ., 1987, pp. 407-410. (In Russian).
6. Faraday M. Faraday's first public report of his work on the subject was in a lecture at the Royal Institution in in the Athenaeum (1850), Faraday’s Diary, London, Bell & Sons, 1933, vol. 4, pp. 79-81.
7. Thomson J. Note oil Professor Faraday's recent experiments on regelation, Proceedings of the Royal Society of London, 1861, vol. 11, pp. 198-204. DOI: 10.1098/rspl.1860.0041.
8. Dash J.G., Rempel A.W., Wettlaufer J.S. The physics of premelted ice and its geophysical consequences, Reviews of Modern Physics, 2006, vol. 78, issue 3, pp. 695-741. DOI: 10.1103/RevModPhys.78.695.
9. Makkonen L. Surface melting of ice, The Journal of Physical Chemistry B, 1997, vol. 101, issue 32, pp. 6196-6200. DOI: 10.1021/jp963248c.
10. Murata K., Asakawa H., Nagashima K, Sazaki G. Thermodynamic origin of surface melting on ice crystals, PNAS, 2016, vol. 113, issue 44, pp. E6741-E6748. DOI: 10.1073/pnas.1608888113.
11. Limmer D.T. Closer look at the surface of ice, PNAS, 2016, vol. 113, issue 44, pp. 12347-12349. DOI: 10.1073/pnas.1615272113.
12. Zhu D.-M., Dash J.G. Surface melting and roughening of adsorbed argon films, Physical Review Letters,1986, vol. 57, issue 23. pp. 2959-2962. DOI: 10.1103/PhysRevLett.57.2959.
13. Frenken J.W.M., van der Veen J.F. Observation of surface melting, Physical Review Letters, 1985, vol. 54, issue 2, pp. 134-137. DOI: 10.1103/PhysRevLett.54.134.
14. Frenken J.W.M., Marée P.M.J., van der Veen J.F. Observation of surface-initiated melting, Physical Review B, 1986, vol. 34, issue 11, pp. 7506-7516. DOI: 10.1103/physrevb.34.7506.
15. Frenken J.W.M., Toennies J.P., Wöll Ch. Self-diffusion at a melting surface observed by He scattering, Physical Review Letters, 1988, vol. 60, issue 17, pp. 1727-1730. DOI: 10.1103/physrevlett.60.1727.
16. Pluis B., van der Gon A.W.D., Frenken J.W.M., van der Veen J.F. Crystal-face dependence of surface melting, Physical Review Letters, 1987, vol. 59, issue 23, pp. 2678-2681. DOI: 10.1103/physrevlett.59.2678.
17. Prince K.C., Breuer U., Bonzel H.P. Anisotropy of the order-disorder phase transition on the Pb(110) surface, Physical Review Letters, 1988, vol. 60, issue 12, pp. 1146-1149. DOI: 10.1103/physrevlett.60.1146.
18. Fuoss P.H., Norton L.J., Brennan S., Fischer-Colbrie A. X-ray scattering studies of the Si-SiO2 interface, Physical Review Letters, 1988, vol. 60, issue 7, pp. 600-603. DOI: 10.1103/physrevlett.60.600.
19. van der Veen J.F., Pluis B., Denier van der Gon A.W. Surface melting, Chemistry and Physics of Solid Surfaces VII, ed. by R. Vanselow, R. Howe, Berlin, Heidelberg, Springer, 1988, pp. 455-490. DOI: 10.1007/978-3-642-73902-6_16.
20. Peters К.F., Cohen J.В., Chung Y.-W. Melting of Pb nanocrystals, Physical Review B, 1998, vol. 57, issue 21, pp. 13430-13438. DOI: 10.1103/physrevb.57.13430.
21. Kofman R., Cheyssac P., Lereah Y., Stella A. Melting of clusters approaching 0D, The European Physical Journal D, 1999, vol. 9, issue 1, pp. 441-444. DOI: 10.1007/s100530050475.
22. Losurdo M., Suvorova A., Rubanov S. et al. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles, Nature Materials, 2016, vol. 15, issue 9, pp. 995-1002. DOI: 10.1038/nmat4705.
23. Wang Z.L., Petroski J.M., Green T.C., El-Sayed M. A. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals, The Journal of Physical Chemistry B, 1998, vol. 102, issue 32, pp. 6145-6151. DOI: 10.1021/jp981594j.
24. Foster D.M., Pavloudis T., Kioseoglou J., Palmer R.E. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon, Nature Communications, 2019, vol. 10, issue 1, art. no. 2583, 8 p. DOI: 10.1038/s41467-019-10713-z.
25. Kryshtal A., Bogatyrenko S., Khshanovska O. Direct imaging of surface melting on a single Sn nanoparticle, Nano Letters, 2023, vol. 23, issue 14, pp. 6354-6359. DOI: 10.1021/acs.nanolett.3c00943.
26. Vegh A., Kaptay G. Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example, Calphad, 2018, vol. 63, pp. 37-50. DOI: 10.1016/j.calphad.2018.08.007.
27. Boinovich L.B. Long-range surface forces and their role in the progress, Russian Chemical Reviews, 2007, vol. 76, no. 5, pp. 471-488. DOI: 10.1070/rc2007v076n05abeh003692.
28. Levitas V.I., Samani K. Size and mechanics effects in surface-induced melting of nanoparticles, Nature Communications, 2011, vol. 2, issue 1, art. no. 284, 6 p. DOI: 10.1038/ncomms1275.
29. Gusev A.I. Nanokristallicheskiye materialy: metody polucheniya i svoystva [Nanocrystalline materials: preparation methods and properties],Yekaterinburg, Ural Branch of RAS Publ., 1998. 115 p. (In Russian).
30. Roduner E. Nanoscopic materials: size-dependent phenomena and growth principles, Cambridge, RSC Publishing, 2014, 439 p. DOI: 10.1039/9781839168970.
31. Nanda K.K. Size-dependent melting of nanoparticles: Hundred years of thermodynamic model, Indian Academy of Sciences, 2009, vol. 72, issue 4, pp. 617-628. DOI: 10.1007/s12043-009-0055-2.
32. Samsonov V.M., Vasilyev S.A., Nebyvalova K.K. et. al. Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters, Journal of Nanoparticle Research, 2020, vol. 22, issue 8, art. no. 247, 15 p. DOI: 10.1007/s11051-020-04923-6.
33. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
34. Sdobnyakov N.Yu., Repchak S.V., Samsonov V.M. et al. Correlation between the size-dependent melting and crystallization temperatures of metal nanoparticles, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2011, vol. 5, issue 3, pp. 508-511. DOI: 10.1134/S1027451011050120.
35. Jiang Q., Yang C.C. Size effect on the phase stability of nanostructures, Current Nanoscience, 2008, vol. 4, issue 2, pp. 179-200. DOI: 10.2174/157341308784340949.
36. Chernyshev A.P. Effect of nanoparticle size on the onset temperature of surface melting, Materials Letters, 2009, vol. 63, issue 17, pp. 1525-1527. DOI: 10.1016/j.matlet.2009.04.009.
37. Lee Ch., Hahn J.W. Calculating the threshold energy of the pulsed laser sintering of silver and copper nanoparticles, Journal of the Optical Society of Korea, 2016, vol. 20, issue 5, pp. 601-606. DOI: 10.3807/JOSK.2016.20.5.601.
38. Alarifi H.A., Atis M., Ozdogan C. et. al. Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation, The Journal of Physical Chemistry C, 2013, vol. 117, issue 23, pp. 12289-12298. DOI: 10.1021/jp311541c.
39. Samsonov V.M., Talyzin I.V., Vasilyev S.A. et. al. On surface pre‑melting of metallic nanoparticles: molecular dynamics study, Journal of Nanoparticle Research, 2023, vol. 25, issue 6, art. no. 105, 15 p. DOI: 10.1007/s11051-023-05743-0.
40. Thompson A. P., Aktulga H. M., Berger R. et. al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 2022, vol. 271, art. no. 108171, 34 p. DOI: 10.1016/j.cpc.2021.108171.
41. Adams J.B., Foiles S.M., Wolfer W.G. Self-diffusion and impurity diffusion of FCC metals using the 5- frequency model and the Embedded Atom Method, Journal of Materials Research, 1989, vol. 4, issue 1, pp. 102-112. DOI: 10.1557/JMR.1989.0102.
42. Zhou X.W., Johnson R.A., Wadley H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 2004, vol. 69, issue 14, art. no. 144113, 10 p. DOI: 10.1103/PhysRevB.69.144113.
43. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical Review B, 1986, vol. 33, issue 12, pp. 7983-7991. DOI: 10.1103/physrevb.33.7983.
44. Qi Y., Çagin T., Johnson W.L., Goddard III W. A. Melting and crystallization in Ni nanoclusters: The mesoscale regime, The Journal of Chemical Physics, 2001, vol. 115, issue 1, pp. 385-394. DOI: 10.1063/1.1373664.
45. Samsonov V.M., Kharechkin S.S., Gafner S.L. et. al. Molecular Dynamics Study of the Melting and Crystallization of Nanoparticles, Crystallography Reports, 2009, vol. 54, issue 3, pp. 526-531. DOI: 10.1134/S1063774509030250.
46. Samsonov V.M., Bembel A.G., Shakulo O.V., Vasilyev S.A. Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters, Crystallography Reports, 2014, vol. 59, issue 4, pp. 580-585. DOI: 10.1134/S1063774514040166.
47. Gafner S.L., Redel’ L.V., Goloven’ko Z.V. et. al. Structural transitions in small nickel clusters, JETP Letters, 2009, vol 89, issue 7, pp. 364-369. DOI: 10.1134/s0021364009070121.
48. Vasilyev S.A. Molekulyarno-dinamicheskoye modelirovaniye termoindutsirovannykh strukturnykh prevrashcheniy v nanochastitsakh metallov podgruppy medi [Molecular dynamics modeling of thermally induced structural transformations in nanoparticles of copper subgroup metals], Cand. phys.-math. sci. diss.: 1.3.8, Tver, TSU Publ., 2021, 110 p. (In Russian).
49. Stukowski A. Structure identification methods for atomistic simulations of crystalline materials, Modelling and Simulation in Materials Science and Engineering, 2012, vol. 20, issue 4, art. no. 045021, 5 p. DOI: 10.1088/0965-0393/20/4/045021.
50. Polak W. Efficiency in identification of internal structure in simulated monoatomic clusters: Comparison between common neighbor analysis and coordination polyhedron method, Computational Materials Science, 2022, vol. 201, art. no. 11088, 7 p. DOI: 10.1016/j.commatsci.2021.110882.
51. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, art. no. 015012, 7 p. DOI: 10.1088/0965-0393/18/1/015012.
52. Chang J., Johnson E. Surface and bulk melting of small metal clusters, Philosophical Magazine, 2005, vol. 85, issue 30, pp. 3617-3627. DOI: 10.1080/14786430500228663.
53. Tian L., Bechinger C. Surface melting of a colloidal glass, Nature Communications, 2022, vol. 13, issue 1, art. no. 6605, 5 p. DOI: 10.1038/s41467-022-34317-2.
54. Surface melting of glass. Physicists make a surprising discovery when they detect surface melting in glasses. Available at: www.sciencedaily.com/releases/2022/11/221104113506.htm (accessed 15.07.2023).
55. Bernal J.D. The Bakerian lecture, 1962. The structure of liquids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964, vol. 280, issue 1382, pp. 299-322. DOI: 10.1098/rspa.1964.0147.
56. Bernal J.D., Mason J., 1960. Packing of spheres: co-ordination of randomly packed spheres, Nature, 1960, vol. 188, issue 4754, pp. 910-911. DOI: 10.1038/188910a0.
57. Berlin A.A., Balabaev N.K. Imitatsiya svojstv tverdykh tel i zhidkostej metodami komp'yuternogo modelirovaniya [Simulation of the properties of solids and liquids by computer simulation methods], Sorosovskiy obrazovatel'nyy zhurnal. Fizika [Soros Educational Journal. Physics], 1997, no. 11, pp. 85-92. (In Russian).
58. Wu T.-C., Joshi S.S., Ho Y.H. et. al. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy, Journal of Magnesium and Alloys, 2021,vol. 9, issue 4, pp. 1406-1418. DOI: 10.1016/j.jma.2020.11.002.
59. Samsonov V.M., Vasilyev S.A. Talyzin I.V., Puitov V.V. Poverkhnostnoe plavlenie v nanochastitsakh i nanosistemakh. 2. Nauchnye i nanotekhnologicheskie aspekty roli poverkhnostnogo plavleniya v nanochastitsakh i nanosistemakh [Surface melting in nanoparticles and nanosystems. 2. Scientific and nanotechnological aspects of the role of surface melting in nanoparticles and nanosystems], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 571-588. DOI: 10.26456/pcascnn/2023.15.571 (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒