Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


The problem of obtaining crystaline phases during cooling binary nanoparticles Au-Co and Ti-V

K.G. Savina, R.E. Grigoryev, A.D. Veselov, S.S. Bogdanov, P.M. Ershov, S.A. Veresov, D.R. Zorin, V.S. Myasnichenko, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2023.15.543

Original article

Abstract: The processes of structure formation in Co-Au and Ti-V metal nanoparticles as well as factors affecting the crystallization process are considered. The objects of the study were Co-Au and Ti-V binary nanoparticles containing N = 400, 800, 1520 and 5000 atoms with the equiatomic composition. The computer experiment was carried out using method of molecular dynamics. The interatomic interaction was described by the tight-binding potential. According to the results of a series of computer experiments, it was found that the main factors influencing the possibility of obtaining crystalline phases are: the cooling rate of binary nanoparticles, their size and the size mismatch of atoms included in the composition, as well as the nature of the interaction of metal atoms. The manifestation of stability/instability in binary nanoparticles may be due to patterns of formation of crystalline phases. Moreover, the tendency to segregate one of the components in a binary system may not be the main factor determining the stability/instability of such a system.

Keywords: molecular dynamics method, tight binding potential, binary nanoparticles, cobalt, gold, titanium, vanadium, dimensional mismatch, crystallization

  • Kseniya G. Savina – 1st year postgraduate student, General Physics Department, Tver State University
  • Roman E. Grigoryev – 2nd year postgraduate student, General Physics Department, Tver State University
  • Alexei D. Veselov – Researcher, General Physics Department, Tver State University
  • Sergey S. Bogdanov – Ph. D., Researcher, General Physics Department, Tver State University
  • Pavel M. Ershov – Researcher, General Physics Department, Tver State University
  • Sergey A. Veresov – 2nd year postgraduate student, General Physics Department, Tver State University
  • Danila R. Zorin – 4st year student, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Savina, K.G. The problem of obtaining crystaline phases during cooling binary nanoparticles Au-Co and Ti-V / K.G. Savina, R.E. Grigoryev, A.D. Veselov, S.S. Bogdanov, P.M. Ershov, S.A. Veresov, D.R. Zorin, V.S. Myasnichenko, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 543-553. DOI: 10.26456/pcascnn/2023.15.543. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sdobnyakov N.Yu., Samsonov V.M., Kolosov A.Yu. et al. To the problem of stability/instability of bimetallic structures Co (core)/ Au(shell) and Au (core)/ Co (shell): atomistic simulation, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 520-534. DOI: 10.26456/pcascnn/2019.11.520. (In Russian).
2. Samsonov V.M., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Factors of the stability/instability of bimetallic core–shell nanostructure, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 950-954. DOI: 10.3103/S1062873821090240.
3. Bertier F., Tadjine A., Legrand B. Ageing of out-of-equilibrium nanoalloys by a kinetic mean-field approach, Physical Chemistry Chemical Physics, 2015, vol. 17, issue 42, pp. 28193-28199. DOI: 10.1039/C5CP00600G.
4. Nelli D., Ferrando R. Core–shell vs. multi-shell formation in nanoalloy evolution from disordered configurations, Nanoscale, 2019, vol. 11, issue 27, pp. 13040-13050. DOI: 10.1039/C9NR02963J.
5. Bhattarai N., Casillas G., Khanal S. et al. Structure and composition of Au/Co magneto-plasmonic nanoparticles, MRS Communications, 2013, vol. 3, issue 3, pp. 177-183. DOI: 10.1557/mrc.2013.30.
6. Myasnichenko V.S., Ershov P.M., Sokolov D.N. et al. Zavisimost' temperatury steklovaniya bimetallicheskikh klasterov na osnove titana ot skorosti okhlazhdeniya [Dependence of glass transition temperature titanium-based bimetallic clusters on the cooling rate], Fundamental'nye problemy sovremennogo materialovedeniya [Basic Problems of Material Science], 2020, vol. 17, no. 3, pp. 355-362. DOI: 10.25712/ASTU.1811-1416.2020.03.012. (In Russian).
7. Myasnichenko V.S., Sdobnyakov N.Yu., Ershov P.M. Simulation of crystalline phase formation in titaniumbased bimetallic clusters, Journal of Nano Research, 2020, vol. 61, pp. 32-41. DOI: 10.4028/www.scientific.net/JNanoR.61.32.
8. Uesugi T., Miyamae S., Higashi K. Enthalpies of solution in Ti-X (X = Mo, Nb, V and W) alloys from firstprinciples calculations, Materials Transactions, 2013, vol. 54, no. 4, pp. 484-492. DOI: 10.2320/matertrans.MC201209.
9. Skripnyak N.V., Ponomareva A.V., Belov M.P. et al. Mixing enthalpies of alloys with dynamical instability: bcc Ti-V system, Acta Materialia, 2000, vol. 188, pp. 145-154. DOI: 10.1016/j.actamat.2020.01.056.
10. Souvatzis P., Eriksson O., Katsnelson M.I., Rudin S.P. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory, Physical Review Letters, 2008, vol. 100, issue 9, art. no. 095901, 4 p. DOI: 10.1103/PhysRevLett.100.095901.
11. Skripnyak N.V., Ponomareva A.V., Belov M.P., Abrikosov I.A. Ab initio calculations of elastic properties of alloys with mechanical instability: application to bcc Ti –V alloys, Materials & Design, 2018, vol. 140, pp. 357-365. DOI: 10.1016/j.matdes.2017.11.071.
12. Myasnichenko V.S. Molekulyarnodinamicheskoe modelirovanie i bioinspirirovannaya optimizatsiya binarnykh i trojnykh metallicheskikh nanostruktur (KlasterEvolyushn) [Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution)]. Certificate RF, no. 2011615692, 2011. (In Russian).
13. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
14. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
15. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
16. Myasnichenko V.S., Ershov P.M., Savina K.G. et al. Zakonomernosti strukturoobrazovaniya v bimetallicheskikh nanochastitsakh s raznoj temperaturoj kristallizatsii [Regularities of structure formation in bimetallic nanoparticles with different crystallization temperatures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 568-579. DOI: 10.26456/pcascnn/2021.13.568. (In Russian).
17. Samsonov V.M., Talyzin I.V., Samsonov M.V. On the effect of heating and cooling rates on the melting and crystallization of metal nanoclusters, Technical Physics, 2016, vol. 61, issue 6, pp. 946-949. DOI: 10.1134/S1063784216060207.
18. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
19. Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S. et al. A Comparative analysis of the size dependence of the melting and crystallization temperatures in silver nanoparticles via the molecular dynamics and Monte-Carlo methods, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Technique, 2018, vol. 12, no. 6, pp. 1206-1209. DOI: 10.1134/S1027451018050671.
20. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.

⇐ Prevoius journal article | Content | Next journal article ⇒