Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


On the structural stability of mono- and binary metallic nanocages

D.N. Sokolov, O.V. Polev, V.S. Myasnichenko, K.G. Savina, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2023.15.602

Original article

Abstract: This work is devoted to the problem of thermal stability of mono- and binary metal nanocages consisting of gold and silver atoms. The number of atoms in the studied nanocages was 1744, 2150, 2470 and 3370 atoms. The characteristic size (outer diameter) of nanocages is from 4,4 to 5,1 nm. Interatomic interaction was described by the tight-binding potential. Analysis of the caloric dependences of the specific potential part of the internal energy made it possible to identify the temperature regions of «healing» of cavities (pores) on the faces and in the internal regions (cores) of nanocages. An example of the structural collapse of a nanocage is described in detail, as a result of which crystalline and quasicrystalline phases are identified in the nanoparticle core for a temperature corresponding to melting for the chosen size. Segregation in a binary Au-Ag nanocage before and after its collapse was also studied.

Keywords: atomistic simulation, tight binding potential, metallic nanocages, porеs, thermal effects, stability/instability, structure formation

  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
  • Oleg V. Polev – 4st year student, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Kseniya G. Savina – 1st year postgraduate student, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Sokolov, D.N. On the structural stability of mono- and binary metallic nanocages / D.N. Sokolov, O.V. Polev, V.S. Myasnichenko, K.G. Savina, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 602-613. DOI: 10.26456/pcascnn/2023.15.602. (In Russian).

Full article (in Russian): download PDF file

References:

1. Myasnichenko V., Kirilov L., Mikhov R., Fidanova S., Sdobnyakov N. Simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, ed. by K. Georgiev, M. Todorov, I. Georgiev, 2019, vol. 793, pp. 277-289. DOI: 10.1007/978-3-319-97277-0_23.
2. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
3. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Structural instability of gold and bimetallic nanowires using Monte Carlo simulation, Recent Advances in Computational Optimization. Studies in Computational Intelligence, ed. by S. Fidanova. Cham, Springer, 2020, vol. 838, pp. 133-145. DOI: 10.1007/978-3-030-22723-4_9.
4. Myasnichenko V., Fidanova S., Mikhov R., Kirilov L., Sdobnyakov N. Representation of initial temperature as a function in simulated annealing approach for metal nanoparticle structures modeling, Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, ed. by I. Dimov, S. Fidanova. Cham, Springer, 2021, vol. 902, pp. 61-72. DOI: 10.1007/978-3-030-55347-0_6.
5. Mikhov R., Myasnichenko V., Fidanova S., Kirilov L., Sdobnyakov N. Influence of the temperature on simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2018, Studies in Computational Intelligence, ed. by In: I. Georgiev, H. Kostadinov, E. Lilkova. Cham, Springer, 2021, vol. 961, pp. 278-290. DOI: 10.1007/978-3-030-71616-5_25.
6. Hadjisavvas G.C., Kelires P.C. Advances in Monte Carlo simulations of nanostructured materials, Computer Simulation Studies in Condensed-Matter Physics XVIII: proceedings of the Eighteenth Workshop, Athens, GA, USA, March 7-11, 2005, ed. by D.P. Landau, S.P. Lewis, H.-B. Schüttler. Berlin, Heidelberg, Springer, 2007, vol. 105, pp. 58-70. DOI: 10.1007/978-3-540-32640-3_8.
7. Viswanathan V., Wang F., Pitsch H. Monte Carlo-based approach for simulating nanostructured catalytic and electrocatalytic systems, Computing in Science & Engineering, 2012, vol. 14, issue 2, pp. 60-69. DOI: 10.1109/MCSE.2011.40.
8. Zhu R. Atomistic simulation of nanostructured materials. Doctoral dissertation, Akron, University of Akron, 2006, 130 p.
9. White R., Welland M.E. Kinetic Monte Carlo simulation of vapor-liquid-solid nanostructure growth, Journal of Applied Physics, 2007, vol. 102, issue 10, pp. 104301-1-104301-7. DOI: 10.1063/1.2805641.
10. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
11. Wang Y., Qin A., Chu L. et al. A nucleation and growth model of silicon nanoparticles produced by pulsed laser deposition via Monte Carlo simulation, Modern Physics Letters B, 2017, vol. 31, issue 4, pp. 1750021-1-1750021-7. DOI: 10.1142/S021798491750021X.
12. Sokolov D.N., Sdobnyakov N.Yu., Savina K.G., Kolosov A.Yu., Myasnichenko V.S. Novye vozmozhnosti vysokoproizvoditel'nykh raschetov nanosistem s ispol'zovaniem programmnogo obespecheniya Metropolis [New opportunities for high-performance simulations of nanosystem using Metropolis software], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 624-638. DOI: 10.26456/pcascnn/2021.13.624. (In Russian).
13. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
14. Baidyshev V.S., Gafner Y.Y., Gafner S.L., Redel L.V. Thermal stability of Pt nanoclusters interacting to carbon sublattice, Physics of the Solid State, 2017, vol. 59, issue 12, pp. 2512-2518. DOI: 10.1134/S1063783417120071.
15. Skrabalak S.E., Chen J., Sun Y. et al. Gold nanocages: synthesis, properties, and applications, Accounts of Chemical Research, 2008, vol. 41, issue 12, pp. 1587-1595. DOI: 10.1021/ar800018v.
16. Skrabalak S.E., Au L., Li L., Xia Y. Facile synthesis of Ag nanocubes and Au nanocages, Nature Protocols, 2007, vol. 2, issue 9, pp. 2182-2190. DOI: 10.1038/nprot.2007.326.
17. Zhang Y., Xu F., Sun Y. et al. Seed-mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation, Chemistry – A European Journal, 2010, vol. 16, issue 30, pp. 9248-9256. DOI: 10.1002/chem.200903552.
18. Lu X., Au X., McLellan J. et al. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH, Nano Letters, 2007, vol. 7, issue 6, pp. 1764-1769. DOI: 10.1021/nl070838l.
19. Hu M., Chen J., Marquez M. et al.Correlated Rayleigh scattering spectroscopy and scanning electron microscopy studies of Au-Ag bimetallic nanoboxes and nanocages, Journal of Physical Chemistry C, 2007, vol. 111, issue 34, pp. 12558-12565. DOI: 10.1021/jp073691v.
20. Zeng J., Zhang Q., Chen J., Xia Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles, Nano Letters, 2010, vol. 10, issue 1, pp. 30-35. DOI: 10.1021/nl903062e.
21. Skrabalak S.E., Au L., Lu X. et al. Gold nanocages for cancer detection and treatment, Nanomedicine, 2007, vol. 2, issue 5, pp. 657-668. DOI: 10.2217/17435889.2.5.657
22. Chen J., Wang D., Xi J. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Letters, 2007, vol. 7, issue 5, pp. 1318-1322. DOI: 10.1021/nl070345g.
23. Myasnichenko V.S. Molekulyarnodinamicheskoe modelirovanie i bioinspirirovannaya optimizatsiya binarnykh i trojnykh metallicheskikh nanostruktur (KlasterEvolyushn) [Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution)]. Certificate RF, no. 2011615692, 2011. (In Russian).
24. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
25. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.2307/2280232.
26. Cleri F., Rosato V. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
27. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
28. Perevezentsev V.N. The theory of evolution of the microstructure of superplastic alloys and ceramics, Superplasticity. 60 years after Pearson: proceedings of the conference organized on behalf of the Superplastic Forming Committee of the Manufacturing Division of the Institute of Materials and Held at the University of Manchester Institute of Science and Technology (UMIST), 7-8 December 1994, ed. by N. Ridley, London, CRC Press, 1995, pp. 51-59.
29. Huang R., Shao G.-F., Zeng X.-M., Wen Y.-H. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations, Scientific Reports, 2014, vol. 4, art. no. 7051, 7 p. DOI: 10.1038/srep07051.
30. Sdobnyakov N.Yu., Myasnichenko V.S., Savina K.G. et al. Issledovanie vnutrennej nanoporistoj struktury i vneshnej poverkhnosti bimetallicheskikh nanochastits [Study of internal nanoporous structure and external surface of bimetallic nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 504-515. DOI: 10.26456/pcascnn/2020.12.504. (In Russian).
31. El-Toni A.M., Habila M.A., Labis J.P. et al. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures, Nanoscale, 2016, vol. 8, issue 5, pp. 2510-2531. DOI: 10.1039/C5NR07004J.

⇐ Prevoius journal article | Content | Next journal article ⇒