Scenarios of structure formation in ternar nanoparticles based on Pd-Pt in the presence of dopant Ni
N.I. Nepsha, D.N. Sokolov, E.S. Mitinev, A.A. Taktarov, N.Yu. Sdobnyakov
Tver State University
DOI: 10.26456/pcascnn/2023.15.507
Original article
Abstract: In this work, scenarios of structure formation in ternary nanoparticles based on platinum and palladium of four stoichiometric compositions of different sizes were studied, with nickel acting as a dopant. Two alternative methods were used: the molecular dynamics method (implemented in the open source software LAMMPS) and the Monte Carlo method (implemented in the Metropolis scheme). In addition, to describe the interatomic interaction, two versions of force fields were used: the modified tightbinding potential (when implementing the molecular dynamics and Monte Carlo methods) and the embedded atom potential (when implementing the molecular dynamics method). Based on the results of a series of computer experiments, it was found that palladium atoms have increased segregation to the surface. At a cooling rate of 0,1 K/ps, an ordered crystalline FCC structure with inclusions of the HCP phase is formed. With an increase in the nickel dopant content to 20% in the ternary Pd-Pt-Ni nanoparticle, the identifiable local structure becomes more complex, both in terms of the number of phases and in terms of structural segregation.
Keywords: molecular dynamics method, Monte Carlo method, embedded atom potential, modified tightbinding potential, polyhedral template matching method, bimetallic and ternary nanoparticles, nickel, palladium, platinum, structure formation, melting and crystallization temperatures
- Nikola I. Nepsha – 3rd year postgraduate student, General Physics Department, Tver State University
- Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
- Egor S. Mitinev – 2nd year graduate student, General Physics Department, Tver State University
- Anton A. Taktarov – 2nd year graduate student, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
Reference:
Nepsha, N.I. Scenarios of structure formation in ternar nanoparticles based on Pd-Pt in the presence of dopant Ni / N.I. Nepsha, D.N. Sokolov, E.S. Mitinev, A.A. Taktarov, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 507-519. DOI: 10.26456/pcascnn/2023.15.507. (In Russian).
Full article (in Russian): download PDF file
References:
1. Ershov P.M., Kolosov A.Yu., Myasnichenko V.S. et al. Issledovanie razmernykh zavisimostei temperatur plavleniya i kristallizatsii i udel'noi izbytochnoi poverkhnostnoi ehnergii nanochastits nikelya vblizi fazovogo perekhoda plavlenie/kristallizatsiya [Investigation of size dependences of melting and crystallization temperatures and specific excess surface energy of nickel nanoparticles under melting / crystallization phase transition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 242-251. DOI: 10.26456/pcascnn/2018.10.242. (In Russian)
2. Vasilyev S.A., Romanov A.A., Vostrov N.V. et al. Izuchenie razmernykh zavisimostei teplot plavleniya i kristallizatsii nanoklasterov platiny i palladiya metodom molekulyarnoi dinamiki [Molecular dynamics study of size dependences of melting and crystallization heats of platinum and palladium nanoclusters], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 436-442. DOI: 10.26456/pcascnn/2019.11.436. (In Russian)
3. Leteba G., Mitchell D., Levecque P. et al. High-index core–shell Ni–Pt nanoparticles as oxygen reduction electrocatalysts, ACS Applied Nano Materials, 2020, vol. 3, issue 6, pp. 5718-5731. DOI: 10.1021/acsanm.0c00915.
4. Wang Q., Mi B., Zhou J. et al. Hollow-structure Pt-Ni nanoparticle electrocatalysts for oxygen reduction reaction, Molecules, 2022, vol. 27, issue 8, art. no. 2524, 11 p. DOI: 10.3390/molecules27082524.
5. Zhang S., Hao Y., Su D. et al. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction, Journal of the American Chemical Society, 2014, vol. 136, issue 45, pp. 15921-15924. DOI: 10.1021/ja5099066.
6. Park K.W., Choi J.H., Kwon B.K. et al. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation, The Journal of Physical Chemistry B, 2002, vol. 106, issue 8, pp. 1869-1877. DOI: 10.1021/jp013168v.
7. Xia J., Fu Y., He G. et al. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions, Applied Catalysis B: Environmental, 2017, vol. 200, pp. 39-46. DOI: 10.1016/j.apcatb.2016.06.066.
8. Umar A., Khan M.S., Alam S. et al. Synthesis and characterization of Pd-Ni bimetallic nanoparticles as efficient adsorbent for the removal of acid orange 8 present in wastewater, Water, 2021, vol. 13, issue 8, art. no. 1095, 17 p DOI: 10.3390/w13081095.
9. Xu Y., Wang G., Qian P. Element segregation and thermal stability of Ni–Pd nanoparticles, Journal of Materials Science, 2022, vol. 57, issue 14, pp. 7384-7399. DOI: 10.1007/s10853-022-07118-7.
10. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. On the problem of stability/instability of bimetallic core-shell nanostructures: Molecular dynamics and thermodynamic simulations, Computational Materials Science, 2021, vol. 199, art.no. 110710, 11 p. DOI: 10.1016/j.commatsci.2021.110710. (In Russian)
11. Divi S., Chatterjee A. Understanding segregation behavior in AuPt, NiPt, and AgAu bimetallic nanoparticles using distribution coefficients, The Journal of Physical Chemistry C, 2016, vol. 120, issue 48, pp. 27296-27306. DOI: 10.1021/acs.jpcc.6b08325.
12. Sneed B.T., Young A.P., Jalalpoor D. et al. Shaped Pd–Ni–Pt core-sandwich-shell nanoparticles: influence of ni sandwich layers on catalytic electrooxidations, ACS Nano, 2014, vol. 8, issue 7, pp. 7239-7250. DOI: 10.1021/nn502259g.
13. Luo Y., Lou W., Feng H. et al. Ultra-small nanoparticles of Pd-Pt-Ni alloy octahedra with high lattice strain for efficient oxygen reduction reaction, Catalysts, 2023, vol. 13, issue 1, art. no. 97, 17 p. DOI: 10.3390/catal13010097.
14. Guo J., Zhang M., Xu J. et al. Core–shell Pd–P@Pt–Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction, The Royal Society of Chemistry, 2022, vol. 12, issue 4, pp. 2246-2252. DOI: 10.1039/D1RA07998K.
15. Atomsk. Available at: www.url: https://atomsk.univ-lille.fr. (accessed 05.08.2023).
16. LAMMPS Molecular Dynamics Simulator. Available at: www.url: http://lammps.sandia.gov. (accessed 15.08.2023).
17. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S., Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
18. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.2307/2280232.
19. Zhoe X.W., Johson R.A., Wadley N.G. Misfit-energy dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 2004, vol. 69, issue 14, pp. 144113-1-144113-10. DOI: 10.1103/PhysRevB.69.144113.
20. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
21. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
22. OVITO Open Visualization Tool. Available at: www.url: http://www.ovito.org. (accessed 25.08.2023).