Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Nanosized high-entropic materials based on HEA, design principles and synthesis methods

V.A. Polukhin, S. Kh. Estemirova, E.D. Kurbanova, R.M. Belyakova

Ural Branch of the Russian Academy of Science

DOI: 10.26456/pcascnn/2023.15.520

Original article

Abstract: The principles of designing high-entropy alloys related to the selection of elements areanalyzed. When selecting elements, a parametric approach is used, including chemical and topological parameters. The main chemical parameter is the enthalpy of mixing of elements, the main topological parameter is the atomic radius. It is emphasized that the use of modified atomic radii (which take into account the local electronic environment) better predicts the formation of either amorphous or crystalline high-entropy alloys. Four main effects that determine the properties of high-entropy alloys are considered: the high entropy effect, the lattice distortion effect, the delayed diffusion effect, and the «cocktail» effect. Obtaining nanosized high-entropy materials based on high-entropy alloys is a new promising direction that allows one to significantly expand their areas of application related to energy (catalysis, energy storage, etc.), nanoelectronics, etc. The article analyzes some methods for the synthesis of nanosized high-entropy alloys and materials based on them. basis, developed as catalysts. The improved performance over conventional catalysts is explained in terms of the effects and features specific to multicomponent systems.

Keywords: multicomponent, amorphous and nanocrystalline alloys, high-entropy alloys and nanosized high-entropy alloys, morphology, catalysts, fcc and hcp structures, bcc, strength, thermal stability

  • Valery A. Polukhin – Dr. Sc., Chief Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
  • Svetlana Kh. Estemirova – Ph.D., Senior Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
  • Elmira D. Kurbanova – Ph.D., Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
  • Rimma M. Belyakova – Ph.D., Senior Researcher, Institute of Metallurgy of the Ural Branch, Ural Branch of the Russian Academy of Science

Reference:

Polukhin, V.A. Nanosized high-entropic materials based on HEA, design principles and synthesis methods / V.A. Polukhin, S. Kh. Estemirova, E.D. Kurbanova, R.M. Belyakova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 520-535. DOI: 10.26456/pcascnn/2023.15.520. (In Russian).

Full article (in Russian): download PDF file

References:

1. Yu T., Zhang Y., Hu Y.et al Twelve-component freestanding nanoporous high-entropy alloys for multifunctional electrocatalysis, ACS Materials Letters, 2022, vol. 4, issue 1, pp. 181-189. DOI: 10.1021/acsmaterialslett.1c00762.
2. Pogrebnjak A.D., Bagdasaryan A.A., Yakushchenko I.V., Beresnev V.M. The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews, 2014, vol. 83, issue 11, pp. 1027-1061. DOI: 10.1070/rcr4407.
3. Kumar J., Linda A., Sadhasivam M. et al. The effect of Si addition on the structure and mechanical properties of equiatomic CoCrFeMnNi high entropy alloy by experiment and simulation, Materialia, 2023, vol. 27, art. no. 101707, 40 p. DOI: 10.1016/j.mtla.2023.101707.
4. Ma D., Grabowski B., Kormann F. et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Materialia, 2015, vol. 100, pp. 90-97. DOI: 10.1016/j.actamat.2015.08.050.
5. Zhang Y., Wang D., Wang S. High-entropy alloys for electrocatalysis: Design, characterization, and applications, Small, 2022, vol. 18, issue 7, art. № 2104339, 22 p. DOI: 10.1002/smll.202104339.
6. Ye Y.F., Wang Q., Lu J. et al. High-entropy alloy: Challenges and prospects, Materials Today, 2016, vol. 19, issue 6, pp. 349-362. DOI: 10.1016/j.mattod.2015.11.026.
7. Callister W.D., Rethwisch W.D. Materials science and engineering: an introduction, 10th ed. Hoboken, NJ, Wiley, 2018, 992 p.
8. Hu Q., Guo S., Wang J.et al. Parametric study of amorphous high-entropy alloys formation from two new perspectives: atomic radius modification and crystalline structure of alloying elements open, Scientific Reports, 2017, vol. 7, art. no. 39917, 12 p. DOI: 10.1038/srep39917.
9. Daryoush S., Mirzadeh H., A. Ataie A. Amorphization, mechanocrystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Materials Letters, 2022, vol. 307, art. no. 131098, 11 p. DOI: 10.1016/j.matlet.2021.131098.
10. Polukhin V.A., Sidorov N.I., Vatolin N.A. Presolidification changes in the structural–dynamic characteristics of glass-forming metallic melts during deep cooling, vitrification, and hydrogenation, Russian Metallurgy (Metally), 2019, vol. 2019, issue 8, p. 758-780. DOI: 10.1134/S0036029519080123.
11. Zhou Y., Shen X., Qian T. et al. A review on the rational design and fabrication of nanosized highentropy materials, Nano Research, 2022, vol. 16, issue 5, p. 7874-7905. DOI: 10.1007/s12274-023-5419-2.
12. Meng F., Zhang W., Zhou Z. et al. Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy, Scripta Materialia, 2021, vol. 203, art. no. 114104, 5 p. DOI: 10.1016/j.scriptamat.2021.114104.
13. Wu D., Kusada K., Yamamoto T. et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles, Chemical Science, 2020, vol. 11, issue 47, pp. 12731-12736. DOI: 10.1039/D0SC02351E.
14. Polukhin V.A., Kurbanova E.D. Stability, atomic dynamics, and thermal destruction of the d metal/graphene interface structure, Russian Metallurgy (Metally), 2017, vol. 2017, issue 2, pp. 116-126. DOI: 10.1134/S0036029517020112.
15. Wu D., Kusada K., Yamamoto T. et al. Platinum-group-metal high-entropy-alloy nanoparticles, Journal of the American Chemical Society, 2020, vol. 142, issue 32, pp. 13833-13838. DOI: 10.1021/jacs.0c04807.
16. Wang A.L., Wan H.C., Xu H. et al. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation, Electrochimica Acta, 2014, vol. 127, pp. 448-453. DOI: 10.1016/j.electacta.2014.02.076.
17. Ma Y., Ma Y., Dreyer S.L. et al. High-entropy metal-organic frameworks for highly reversible sodium storage, Advanced Materials, 2021, vol. 33. art. no. 2101342, 10 p. 10.1002/adma.202101342.
18. Xiao B., Wu G., Wang T. et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries, Nano Energy, 2022, vol. 95, art. no. 106962, 7 p. DOI: 10.1016/j.nanoen.2022.106962.
19. Polukhin V.A., Kurbanova E.D., Vatolin N.A. Formation of an intermediate order in metallic glasses and a long order in nanocrystalline alloys with allowance for the character of binding and the transformation of the short order in a melt, Russian Metallurgy (Metally), 2018, vol. 2018, issue 2, pp. 95-109. DOI: 10.1134/S0036029518020167.
20. Polukhin V.A., Sidorov N.I., Kurbanova E.D., Belyakova R.M. Comparative analysis of the characteristics of amorphous, nanocrystalline, and crystalline membrane alloys, Russian Metallurgy (Metally), 2022, issue 8, pp. 797-817. DOI: 10.1134/S0036029522080110.
21. Kipkirui N.G., Lin T.T., Kiplangat R.S. et al. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: Synthesis and characterization, Surface and Coatings Technology, 2022, vol. 449, art. no. 128988, 9 p. DOI: 10.1016/j.surfcoat.2022.128988.
22. Xu W., Chen H., Jie K.C. et al. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation, Angewandte Chemie International Edition, 2019, vol. 58, issue 15, pp. 5018-5022. DOI: 10.1002/anie.201900787.
23. Li H., Sun H., Wang C. et al. Controllable electrochemical synthesis and magnetic behaviors of Mg-Mn-FeCo-Ni-Gd alloy films, Journal of Alloys and Compounds, 2014, vol. 598, pp. 161-165. DOI: 10.1016/j.jallcom.2014.02.051.
24. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts, Acta Materialia, 2017, vol. 122, pp. 448-511. DOI: 10.1016/j.actamat.2016.08.081.
25. Yeh J.-W., Chen J.-W., Lin S.-J. et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 2004, vol. 6, issue 5, pp. 299-303. DOI: 10.1002/adem.200300567.
26. Yeh J.W. Recent progress in high-entropy alloys, Annales De Chimie – Science des Materiaux, 2006, vol. 31, issue 6, pp. 633-648. DOI: 10.3166/acsm.31.633-648.
27. Ranganathan S. Alloyed pleasures multimetallic cocktails, Current Science, 2003, vol. 85, no. 10, pp. 1404-1406.
28. / K. Mori, N. Hashimoto, N. Kamiuchi et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation, Nature Communications, 2021, vol.12, art. no. 3884, 11 p. https://doi.org/10.1038/s41467-021-24228-z.
29. Huang K., Zhang B., Wu B. et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst, Journal of Materials Chemistry A, 2020, vol. 8, issue 24, pp. 11938-11947. DOI: 10.1039/D0TA02125C.
30. Yao Y., Liu Z., Xie P. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts, Science Advances, 2020, vol. 6, no. 11, art. no. eaaz0510, 10 p. DOI: 10.1126/sciadv.aaz0510.
31. Zhang D., Zhao H., Wu X. et al. Multi-site electrocatalysts boost pH-universal nitrogen reduction by highentropy alloys, Advanced Functional Materials, 2021, vol. 31, issue 9, art. no. 2006939, 8 p. DOI: 10.1002/adfm.202006939.
32. Qin Y.-С., Wang F.-Q., Wang X.-M.et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion, Rare Metals, 2021, vol. 40, issue 9, pp. 2354-2368. DOI: 10.1007/s12598-021-01727-y.

⇐ Prevoius journal article | Content | Next journal article ⇒