Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Size effect and structural transformations in ternary nanoparticles TixAl96-xV4

V.S. Myasnichenko, P.M. Ershov, S.A. Veresov, A.N. Bazulev, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2023.15.495

Original article

Abstract: The final configurations obtained during crystallization in ternary metal nanoalloys TixAl96-xV4 of various compositions were studied. The molecular dynamics method was used as an atomistic simulation method. Interatomic interaction was described by the tight-binding potential. The size dependence of melting temperatures, as well as changes in melting and crystallization temperatures with changes in the composition of ternary nanoparticles, have been determined. Based on the results of a series of computer experiments, differences in the crystallization scenarios of TixAl96-xV4 ternary nanoparticles were established. A classification based on internal structure and degree of crystallinity was proposed and tested. For TixAl96-xV4 ternary nanoparticles, five main classes are identified based on the number of (semi) axes of 5th order symmetry. Despite the fact that studying the segregation of components of TixAl96-xV4 ternary nanoparticles was not the goal of the work, atomic configurations corresponding to different temperatures during the cooling process were constructed and described.

Keywords: molecular dynamics method, tight-binding potential, ternary nanoparticles, structure formation, melting and crystallization temperatures

  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Pavel M. Ershov – Researcher, General Physics Department, Tver State University
  • Sergey A. Veresov – 2nd year postgraduate student, General Physics Department, Tver State University
  • Anatolii N. Bazulev – Ph. D., Docent, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Myasnichenko, V.S. Size effect and structural transformations in ternary nanoparticles TixAl96-xV4 / V.S. Myasnichenko, P.M. Ershov, S.A. Veresov, A.N. Bazulev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 495-506. DOI: 10.26456/pcascnn/2023.15.495. (In Russian).

Full article (in Russian): download PDF file

References:

1. Haghighi N.R., Poursalehi R. Size, morphology and optical properties of titanium-based colloidal nanoparticles prepared by dc electrical arc discharge in different liquids, Procedia Materials Science, 2015, vol. 11, pp. 661-665. DOI: 10.1016/j.mspro.2015.11.018.
2. Behera A., Behera A. Ti-based nanoalloy in automobile industry, Micro and Nano Technologies, Nanotechnology in the Automotive Industry, ed. by H. Song et al., Amsterdam, Elsevier, 2022, chapter 13, pp. 255-268. DOI: 10.1016/B978-0-323-90524-4.00013-X.
3. Myasnichenko V.S., Sdobnyakov N.Yu., Ershov P.M. Simulation of crystalline phase formation in titaniumbased bimetallic clusters, Journal of Nano Research, 2020, vol. 61, pp. 32-41. DOI: 10.4028/www.scientific.net/JNanoR.61.32.
4. Myasnichenko V.S., Ershov P.M., Sokolov D.N. et al. Zavisimost' temperatury steklovaniya bimetallicheskikh klasterov na osnove titana ot skorosti okhlazhdeniya [Dependence of glass transition temperature titanium-based bimetallic clusters on the cooling rate], Fundamental'nye problemy sovremennogo materialovedeniya [Basic Problems of Material Science], 2020, vol. 17, no. 3, pp. 355-362. DOI: 10.25712/ASTU.1811-1416.2020.03.012. (In Russian).
5. Sdobnyakov N.Yu., Myasnichenko V.S., Davydenkova E.M. et al. O strukturnykh prevrashcheniyakh v nanochastitsakh titan–alyuminij [About structural transformations in titanium-containing nanoparticles], Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of the Kabardino-Balkarian State University], 2019, vol IX, no. 4, pp. 13-16. (In Russian).
6. Sdobnyakov N.Yu., Samsonov V.M., Myasnichenko V.S. et al. Effect of cooling rate on structural transformations in Ti-Al-V nanoalloy: molecular dynamics study, Journal of Physics: Conference Series, 2021, vol. 2052, art. no. 012038, 4 p. DOI: 10.1088/1742-6596/2052/1/012038.
7. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
8. Bağ Ö., Ergen S., Yılmaz F., Kölemen U. Influence of Al content on transformation temperature and activation energy of Ti–V–Al high temperature shape memory alloys, Solid State Communications, 2021, vol. 323, art. no. 114104, 5 p. DOI: 10.1016/j.ssc.2020.114104.
9. Ergen S. Determination of phase transformation and activation energy in high temperature shape memory TiV-Al alloy, Hittite Journal of Science and Engineering, 2018, vol. 5, issue 1, pp. 63-68. DOI: 10.17350/HJSE19030000066
10. Ducherow M., Fleischer A., Mändl S. Change in wear behaviour of Ti and Ti6Al4V after plasma immersion ion implantation, Plasma Processes and Polymers, vol. 4, issue S1, pp. S602-S606. DOI: 10.1002/ppap.200731414.
11. Myasnichenko V.S., Ershov P.S., Bazulev A.N. et al. O zakonomernostyakh strukturoobrazovaniya v ternarnoj sisteme Ti6Al4V [On the patterns of structure formation in the ternary system Ti6Al4V], Tezisy XII Mezhdunarodnoi nauchnoi konferentsii «Kinetika i mekhanizm kristallizatsii. Kristallizatsiya i materialy novogo pokoleniya» [Proceedings of the XII International Scientific Conference «Kinetics and mechanism of crystallization. Crystallization and new generation materials»], Ivanovo, September 18-22, 2023, Ivanovo: Ivanovo Publishing House, 2023, pp. 141-142. (In Russian).
12. Myasnichenko V.S., Ershov P.V., Bazulev A.N. et al. Razmernyj effekt pri kristallizatsii ternarnykh nanochastits splava Ti6Al4V, Sbornik nauchnykh trudov XIII Mezhdunarodnoi nauchnoi konferentsii «Khimicheskaya termodinamika i kinetika», Velikij Novgorod, May 15-19, 2023, Velikij Novgorod: NovSU Publ., 2023, pp. 232-234. (In Russian).
13. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
14. Larsen P.M., Schmidt S., Schiøtz J. Robust structural identification via polyhedral template matching modelling, Modelling and Simulation in Materials Science and Engineering, 2016, vol. 24, no. 5, art.no. 055007, 18 p. DOI: 10.1088/0965-0393/24/5/055007.
15. Myasnichenko V.S. Molekulyarnodinamicheskoe modelirovanie i bioinspirirovannaya optimizatsiya binarnykh i trojnykh metallicheskikh nanostruktur (KlasterEvolyushn) [Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution)]. Certificate RF, no. 2011615692, 2011. (In Russian).
16. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
17. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
18. Karolewski M.A. Tight-binding potentials for sputtering simulations with fcc and bcc metals, Radiation Effects and Defects in Solids, 2001, vol. 153, issue 3, pp. 239-255. DOI: 10.1080/10420150108211842.
19. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
20. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph], Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
21. Bogdanov S.S., Myasnichenko V.S., Kolosov A.Yu. et al. Osobennosti protsessa kristallizatsii v bimetallicheskikh nanostrukturakh pod vneshnim davleniem [The features of the crystallization process in bimetallic nanostructures under external pressure], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 422-430. DOI: 10.26456/pcascnn/2019.11.422. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒