Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Optical properties of double doped LiNbO3:Gd:Mg crystals

N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov

Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

DOI: 10.26456/pcascnn/2023.15.207

Short communication

Abstract: By direct alloying of congruent melt with magnesium and gadolinium oxides, compositionally uniform nonlinear optical single double doped crystals with different content of dopants have been grown: LiNbO3:Gd3+(0,003):Mg2+(0,65 wt. %), LiNbO3:Gd3+(0,23):Mg2+ (0,75 wt. %) and LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %). The results obtained by laser conoscopy and photoinduced light scattering indicate a high structural perfection of the grown crystals. The results give grounds to assert that LiNbO3:Gd:Mg crystals are close to a stoichiometric crystal in some of their properties. A low value of the coercive field (≈2,3 kV/cm) is one of such properties of stoichiometric and magnesium-doped LiNbO3 crystals, which are important for creating materials for laser radiation conversion on periodically polarized submicron-sized domains with flat boundaries. In this case, the grown LiNbO3:Gd:Mg crystals have a much higher optical uniformity than a stoichiometric crystal. Crystals of LiNbO3:Gd3+(0,003):Mg2+ (0,65 wt. %) and LiNbO3:Gd3+(0,23):Mg2+ (0,75 wt. %) have the highest optical uniformity and the absence of the photorefraction effect. Increase of gadolinium concentration to 0,25 wt. % leads to increased distortion of the conoscopic pattern and to the appearance of a significant photorefractive response of the LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %) crystal.

Keywords: lithium niobate, crystal, defects, laser conoscopy, photorefractive properties

  • Natalya A. Teplyakova – Ph. D., Senior Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head of the Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Reference:

Teplyakova, N.A. Optical properties of double doped LiNbO3:Gd:Mg crystals / N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 207-214. DOI: 10.26456/pcascnn/2023.15.207. (In Russian).

Full article (in Russian): download PDF file

References:

1. Kemlin V., Jegouso D., Debray J. et al. Dual-wavelength source from 5% MgO:PPLN cylinders for thecharacterization of nonlinear infrared crystals, Optics Express, 2013, vol. 21, issue 23, pp. 28886-28891. DOI: 10.1364/OE.21.028886.
2. Murray R.T., Runcorn T.H., Guha S. et al. High average power parametric wavelength conversion at 3.31-3.48 μm in MgO:PPLN, Optics Express, 2017, vol. 25, issue 6, pp. 6421-6430. DOI: 10.1364/OE.25.006421.
3. Sidorov N.V., Bobreva L.A., Teplyakova N.A. et al. A comparative study of the structure and chemical homogeneity of LiNbO3:Mg (~ 5.3 mol%) crystals grown from charges of different origins, Inorganic Materials, 2019, vol. 55, issue 11, pp. 1132-1137. DOI: 10.1134/S0020168519100145.
4. Sidorov N.V., Teplyakova N.A., Vliyanie sposoba legirovaniya na odnorodnost' i opticheskie svojstva kristallov LiNbO3:Mg [Influence of the method of doping on uniformity and optical properties of LiNbO3:Mg crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 383-391. DOI: 10.26456/pcascnn/2021.13.383. (In Russian).
5. Liu J., Liu A., Chen Y. et al. Growth and optical properties of Pr-Mg co-doped LiNbO3 crystal using Bridgman method, Physica B: Condensed Matter, 2022, vol. 624, art. no. 41341, 6 p. DOI: 10.1016/j.physb.2021.413419.
6. Kong T., Luo Y., Wang W. et al. Enhanced ultraviolet damage resistance in magnesium doped lithium niobate crystals through zirconium co-doping, Materials, 2021, vol. 14, issue 4, art. no. 1017, 6 p. DOI: 10.3390/ma14041017.
7. Zhang P., Yin J., Zhang L. et al. Efficient enhanced 1.54 μm emission in Er/Yb:LiNbO3 crystal codoped with Mg2+ ions, Optical Materials, 2014, vol. 36, issue 12, pp. 1986-1990. DOI: 10.1016/j.optmat.2014.01.033.
8. Sidorov N.V., Pikoul O.Y., Teplyakova N.A., Palatnikov M.N. Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svojstv nelinejno-opticheskogo kristalla niobata litiya [Laser conoscopy and photoinduced light scattering in studies of the properties of a nonlinear optical single crystal of lithium niobate]. Moscow, RAS Publ., 2019, 350 p. (In Russian).
9. Kuz'minov Yu.S. Elektroopticheskij i nelinejnoopticheskij kristall niobata litiya [Electro-optical and nonlinearoptical crystal of lithium niobate]. Moscow, Nauka Publ., 1987, 264 p. (In Russian).
10. Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin, Springer, 2008, 250 p. DOI: 10.1007/978-3-540-70766-0.
11. Blistanov A.A., Lyubchenko V.M., Goryunovа A.N. Recombination processes in LiNbO3 crystals, Crystallography Reports, 1998, vol. 43, issue 1, pp. 78-82.

⇐ Prevoius journal article | Content | Next journal article ⇒