Peculiarities of the microstructure and properties of thin spherolitic PZT films formed by a two-stage radiofrequency magnetron deposition method
M.V. Staritsyn1, D.A. Kiselev2, V.P. Pronin3, A.N. Krushelnitsky3, S.V. Senkevich4, E.Yu. Kaptelov4, I.P. Pronin4
1 NRC «Kurchatov institute» – CRISM «Prometey»
2 NUST MISIS
3 Herzen University
4 Ioffe Institute
DOI: 10.26456/pcascnn/2023.15.196
Original article
Abstract: The paper presents the results of experimental studies of the microstructure and piezoelectric properties of thin lead zirconate-titanate films characterized by either an island structure of radially radiant spherulites located in a low-temperature pyrochlore matrix or a block single-phase spherulitic structure with different linear block sizes. Changing the size of the blocks within 10-50 µm was achieved by varying the distance from the target to the substrate in the range of 30-70 mm, leading to a change in the heating temperature of the substrate in the radio-frequency magnetron sputtering of a ceramic target during film deposition on a «cold» platinized silicon substrate. The temperature of subsequent annealing for the crystallization of the perovskite phase was 550°C for island films and 580°C for single-phase films. Scanning electron microscopy methods have revealed anomalous dependences of the rotation of the growth axis with the growth of the linear dimensions of spherulites, reaching a value of 1,2 deg/μm, and other microstructural parameters of thin films. The observed phenomena were caused by lateral mechanical stresses arising during the solid-state transformation from the pyrochlore phase to the perovskite phase, accompanied by a change in the density of the films. At tensile stresses of the order of the elastic limit, this led to the appearance of intra-block high-angle boundaries. The behavior of lateral polarization was studied by the method of force microscopy of the piezoelectric response and it was shown that tensile mechanical stresses in spherulites lead to the orientation of the lateral polarization vector in the radial direction.
Keywords: lead zirconate-titanate thin films, pyrochlore-perovskite phase transformation, spherulite microstructure, piezoresponse force microscopy
- Mikhail V. Staritsyn – engineer, NRC «Kurchatov institute» – CRISM «Prometey»
- Dmitry A. Kiselev – Ph. D., Senior Researcher, Head of the Laboratory of Physics of Oxide Ferroelectrics, NUST MISIS
- Vladimir P. Pronin – Dr. Sc., Docent, Professor of the Department of Theoretical Physics and Astronomy, Herzen University
- Artemy N. Krushelnitsky – Ph. D., Docent, Department of Methods of Teaching Physics, Herzen University
- Stanislav V. Senkevich – Ph. D., Senior Researcher, Ioffe Institute
- Evgeny Yu. Kaptelov – Ph. D., Senior Researcher, Ioffe Institute
- Igor P. Pronin – Dr. Sc, Senior Researcher (rank), Leading Researcher (job title), Ioffe Institute
Reference:
Staritsyn, M.V. Peculiarities of the microstructure and properties of thin spherolitic PZT films formed by a two-stage radiofrequency magnetron deposition method / M.V. Staritsyn, D.A. Kiselev, V.P. Pronin, A.N. Krushelnitsky, S.V. Senkevich, E.Yu. Kaptelov, I.P. Pronin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 196-206. DOI: 10.26456/pcascnn/2023.15.196. (In Russian).
Full article (in Russian): download PDF file
References:
1. Mikolajick T., Slesazeck S., Mulaosmanovic H. et al. Next generation ferroelectric materials for semiconductor process integration and their applications, Journal of Applied Physics, 2021, vol. 129, issue 10, art. № 100901, 21 p. DOI: 10.1063/5.0037617.
2. Wall J.M., Yan F. Sputtering process of ScxAl1-xN thin films for ferroelectric applications, Coatings, 2023, vol. 13, issue 1, art. no. 54, 18 p. DOI: 10.3390/coatings13010054.
3. Naito K., Yamaguchi K., Yoshimura T., Fujimura N. The ferroelectric orthorhombic phase formation of Hf0.5Zr0.5O2 thin films on (-201) β–Ga2O3 substrate by atomic layer deposition, Japanese Journal of Applied Physics, 2023, vol. 62, issue 1, art. no. SM, pp. SM1018-1-SM1018-5. DOI: 10.35848/1347-4065/ace917.
4. Zhang H., Vasiljevic M., Bergne A. et al. Engineering of electromechanical oxides by symmetry breaking, Advanced Materials Interfaces, 2023, vol. 10, issue 18, art. no. 2300083, 22 p. DOI: 10.1002/admi.202300083.
5. Izyumskaya N., Alivov Y.-I. , Cho S.-J. et al. Processing, structure, properties, and applications of PZT thin films, Critical Reviews in Solid State and Materials Sciences, 2007, vol. 32, issue 3-4, pp. 111-202. DOI: 10.1080/10408430701707347.
6. Bretos I., Jiménez R., Tomczyk M. et al. Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecrtonic devices, Scientific Repotrs, 2016, vol. 6, art. no. 20143, 14 p. DOI: 10.1038/srep20143.
7. Song L., Glinsek S., Defay E. Toward low-temperature processing of lead zirconate titanate thin films: advances, strategies, and applications, Applied Physics Reviews, 2021, vol. 8, issue 4, art. № 041315, 37 p. DOI: 10.1063/5.0054004.
8. Ma Y., Song J., Wang X. et al. Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film, Coatings, 2021, vol. 11, issue 8, art. № 944, 22 p. DOI: 10.3390/coatings11080944.
9. Elshin A.S., Pronin I.P., Senkevich S.V., Mishina E.D. Nonlinear optical diagnostics of thin polycrystalline lead zirconate titanate films, Technical Physics Letters, 2020, vol. 46, issue 4, pp. 385-388. DOI: 10.1134/S1063785020040215.
10. Staritsyn M.V., Fedoseev M.L., Kaptelov E.Yu. et al. Izmenenie struktury submikronnykh plenok TsTS pri tonkom var'irovanii sostava v oblasti morfotropnoj fazovoj granitsy [Structure changing of submicron PZT films with a fine variation of the composition corresponding to morphotropic phase boundary], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 400-410. DOI: 10.26456/pcascnn/2021.13.400. (In Russian).
11. Kolosov V.Yu., Thölén A.R., Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films, Acta Materialia, 2000, vol. 48, issue 8, pp. 1829-1840/ DOI: 10.1016/S1359-6454(99)00471-1.
12. Shtukenberg A.G., Punin Y.O., Gunn E, Kahr B. Spherulites, Chemical Reviews, 2012, vol. 112, issue 3, pp. 1805-1838. DOI: 10.1021/cr200297f.
13. Sun W., Zhou W., Growth mechanism and microstructures of Cu2O/PVP spherulites, RSC Advances, 2022, vol. 12, issue 31, pp. 20022-20028. DOI: 10.1039/d2ra03302j.
14. Lutjes N.R., Zhou S., Antoja-Lleonart J. et al. Spherulitic and rotational crystal growth of Quartz thin films Scientific Reports, 2021, vol. 11, issue 1, art. № 14888, 12 p. DOI: 10.1038/s41598-021-94147-y.
15. Musterman E.J., Dierolf V., Jain H., Curved lattices of crystals formed in glass, International Journal of Applied Glass Science, 2022, vol. 13, issue 3, pp. 402-419. DOI: 10.1111/ijag.16574.
16. Staritsyn M.V., Pronin V.P., Khinich I.I. et al. Mikrostruktura sferolitovykh tonkikh plenok cirkonata titanata svinca [Microstructure of spherulitic lead zirconate-titanate thin films], Fizika tverdogo tela [Physics of the Solid State], 2023, vol. 65, issue 8, pp. 1368-1374. DOI: 10.21883/FTT.2023.08.56155.140. (In Russian).
17. Staritsyn M.V., Fedoseev M.L., Kiselev D.A. et al. Ferroelectric properties of lead zirconate titanate thin films obtained by RF magnetron sputtering near the morphotropic phase boundary, Physics of the Solid State, 2023, vol. 65, issue 2, pp. 290-295. DOI: 10.21883/PSS.2023.02.55414.531.
18. Nazeer H., Nguyen M.D., Sukas Ö.S. et al. Compositional dependence of the Young’s modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films, Journal of Microelectromechanical Systems, 2015, vol. 24, issue 1, pp. 166-173. DOI: 10.1109/JMEMS.2014.2323476.
19. Yagnamurthy I., Chasiotis I., Lambros J. et al. Mechanical and ferroelectric behavior of PZT-based thin films, Journal of Microelectromechanical Systems, 2011, vol. 20, issue 6, pp. 1250-1258. DOI: 10.1109/JMEMS.2011.2167666.
20. Tentilova I.Yu., Kaptelov E.Yu., Pronin I.P. Ugolkov V.L. Micropore formation in lead zirconate titanate films, Inorganic Materials, 2012, vol. 48, issue 11, pp. 1136-1140. DOI: 10.1134/S0020168512110155.
21. Afanasjev V.P., Petrov A.A., Pronin I.P. et al. Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films, Journal of Physics: Condensed Matter, 2001, vol. 13, no. 39, pp. 8755-8763. DOI: 10.1088/0953-8984/13/39/304.
22. Pronin I.P., Kaptelov E.Yu., Gol’tsev A.V., Afanas’ev V.P. The effect of stresses on self-polarization of thin ferroelectric films, Physics of the Solid State, 2003, vol. 45, issue 9, pp. 1768-1773. DOI: 10.1134/1.1611249.