Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Features of the defect structure of a LiNbO3:Cu (0.015 wt.%) single crystal

N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov

Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

DOI: 10.26456/pcascnn/2023.15.215

Short communication

Abstract: By direct alloying of melt with copper oxide, а compositionally uniformity LiNbO3:Cu (0,015 wt%) single crystal doped with a photovoltaically active copper dopant has been grown. The optical properties of the single crystal have been studied by photoinduced light scattering. The values of the diffusion and photovoltaic fields were calculated for the studied crystals based on the intensity and magnitude of the opening angle of the speckle structure of the photoinduced light scattering. Significant differences in the photoinduced light scattering patterns and in the values of the photoinduced light scattering photoelectric parameters of nominally pure crystals of congruent and stoichiometric compositions and a LiNbO3:Cu (0,015 wt%) crystal have been found. It has been established that when a congruent lithium niobate crystal is doped with copper cations, the diffusion field increases, the photofoltaic field decreases, and the band gap in the crystal decreases noticeably. In contrast to the crystal of stoichiometric compositions, the photovoltaic mechanism remains the predominant mechanism of photorefraction for crystals of congruent composition and LiNbO3:Cu (0,015 wt%). Photoinduced light scattering data indicate the presence of a LiNbO3:Cu(0,015 wt.%) crystal in the band gap high density of small energy levels that increase the effect of photorefraction and electrical conductivity of the crystal.

Keywords: lithium niobate, crystal, defects, photorefractive properties, photovoltaic fields, band gap

  • Natalya A. Teplyakova – Ph. D., Senior Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head of the Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Reference:

Teplyakova, N.A. Features of the defect structure of a LiNbO3:Cu (0.015 wt.%) single crystal / N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 215-222. DOI: 10.26456/pcascnn/2023.15.215. (In Russian).

Full article (in Russian): download PDF file

References:

1. Buse K., Jermann F., Krätzig E. Infrared holographic recording in LiNbO3:Cu, Applied Physics A, 1994, vol. 58, issue 3, pp. 191-195. DOI: 10.1007/BF00324375.
2. Teplyakova N.A., Sidorov N.V., Palatnikov M.N. Defektnaya struktura i fotorefraktivnye svojstva kristallov dvojnogo legirovaniya LiNbO3:Mg:Fe i LiNbO3:Zn:Fe [Defective structure and photorefractive properties of double doped crystals LiNbO3:Fe:Mg and LiNbO3:Fe:Zn], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 628-635. (In Russian). DOI: 10.26456/pcascnn/2018.10.628.
3. Arizmendi L. Photonic applications of lithium niobate crystals, Physica Status Solidi (A), 2004, vol. 201, issue 2, pp. 253-283. DOI: 10.1002/pssa.200303911.
4. Gunter P., Huignard J.-P. Photorefractive materials and their applications. 1 Basic effects, Springer Series in Optical Sciences. New York, Springer, 2006, vol. 113, pp. 1-5. DOI: 10.1002/pssa.200303911.
5. Wang Y., Wang R., Yuan J. et al. Terahertz generation from Cu ion implantation into lithium niobate, Journal of Luminescence, 2014, vol. 147, pp. 242-244. DOI: 10.1016/j.jlumin.2013.11.032.
6. Kukhtarev N.V., Kukhtereva T.V., Stargell G. et al. Pyroelectric and photogalvanic crystal accelerators, Journal of Applied Physics, 2009, vol. 106, issue 1, pp. 014111-1-04111-7. DOI: 10.1063/1.3159903.
7. Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin, Springer, 2008, 250 p. DOI: 10.1007/978-3-540-70766-0.
8. Maksimenko V.A., Syuy A.V., Karpets Yu.M. Fotoindutsirovannye protsessy v kristallakh niobata litiya [Photoinduced processes in lithium niobate crystals]. Moscow, Fizmatlit Publ., 2008, 96 p. (In Russian).
9. Gorelik V.S, Skrabatun A.V., Pyatyshev A.Yu. et al. Optical properties of copper-doped lithium niobate crystals, Inorganic Materials, 2018, vol. 54, issue 10, pp. 1013-1020. DOI: 10.1134/S0020168518100072.
10. Sidorov N.V., Pikoul O.Y., Teplyakova N.A., Palatnikov M.N. Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svojstv nelinejno-opticheskogo kristalla niobata litiya [Laser conoscopy and photoinduced light scattering in studies of the properties of a nonlinear optical single crystal of lithium niobate]. Moscow, RAS Publ., 2019, 350 p. (In Russian).
11. Goulkov M., Imlau M., Woike Th. Photorefractive parameters of lithium niobate crystals from photoinduced light scattering, Physical Review B, 2008, vol. 77, issue 23, pp. 235110-1-235110-7. DOI: 10.1103/PhysRevB.77.235110.

⇐ Prevoius journal article | Content | Next journal article ⇒