On the possibility of decomposition of complex photoluminescence spectra
S.P. Kramynin, E.M. Zobov, M.E. Zobov
Institute of Physics of Daghestan Scientific Center of RAS
DOI: 10.26456/pcascnn/2023.15.148
Original article
Abstract: A method is proposed for decomposing the integrated photoluminescence spectrum into components based on the analysis of an identifier, which is the ratio of the first and second derivatives of the experimental data. The question of the limits of applicability of this method of decomposition of a complex photoluminescence spectrum has been studied in this paper. The definition of the sensitivity of the method is given on the example of an integral spectrum formed by two Gaussians. The evolution of the dependence of the used identifier on the wavelength is shown with a change in the distance between the maxima of the elementary components. By means of a synthetic experiment, dependences of the sensitivity on the ratio of the half-widths and intensities of the components of the integral spectrum are plotted. The dependences obtained are non-linear and have local maxima and minima. The use of the calculated dependences makes it possible to estimate at what overlap of the bands the decomposition is still possible, and at what it is no longer possible to separate the elementary component from the integrated spectrum.
Keywords: photoluminescence, spectrum, decomposition, ZnS, ZnO, modeling, integrated spectrum, Gaussian, luminescent analysis, synthetic experiment
- Sergey P. Kramynin – Researcher, Institute of Physics of Daghestan Scientific Center of RAS
- Evgeniy M. Zobov – Dr.Sc., Chief Researcher, Institute of Physics of Daghestan Scientific Center of RAS
- Marat E. Zobov – Ph. D., Senior Researcher, Institute of Physics of Daghestan Scientific Center of RAS
Reference:
Kramynin, S.P. On the possibility of decomposition of complex photoluminescence spectra / S.P. Kramynin, E.M. Zobov, M.E. Zobov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 148-156. DOI: 10.26456/pcascnn/2023.15.148. (In Russian).
Full article (in Russian): download PDF file
References:
1. Plakhtii Ye.G., Khmelenko O.V. Crystal structure and photoluminescence of ZnSe and ZnSe:Mn nanocrystals obtained by combustion synthesis, Physica Scripta, 2023, vol. 98, issue 3, art. no. 035804, 11 p. DOI: 10.1088/1402-4896/acb5ca.
2. Matiushkina A., Litvinov I., Bazhenova A. et al.Time and spectrally resolved photoluminescence study of alloyed CdxZn1−xSeyS1−y/ZnS quantum dots and their nanocomposites with SPIONs in living cells, International Journal of Molecular Sciences, 2022, vol. 23, art. no. 4061, 20 p. DOI: 10.3390/ijms23074061.
3. Messalti A.S., El-Ghozzi М., Zambon D., Mahiou R., Setifi Z. Investigating photoluminescence properties of Ca-doped ZnS nanoparticles prepared via hydrothermal method, Journal of Luminescence, 2021, vol. 238, art. no. 118227, 8 p. DOI: 10.1016/j.jlumin.2021.118227.
4. Chubenko E.B., Baglov A.V., Leanenia M.S., Urmanov B.D., Borisenko V.E. Broad band photoluminescence of g-C3N4/ZnO/ZnS composite towards white light source, Materials Science and Engineering: B, 2021, vol. 267, art. no. 115109, 7 p. DOI: 10.1016/j.mseb.2021.115109.
5. Poornaprakash B., Prabhakar Vattikuti S.V., Subramanyam K. et al. Photoluminescence and hydrogen evolution properties of ZnS:Eu quantum dots, Ceramics International, 2021, vol. 47, issue 20, pp. 28976-28984. DOI: 10.1016/j.ceramint.2021.07.058.
6. Madhavi J., Prasad V., Reddy K.R., Reddy Ch.V., Raghu A.V. Facile synthesis of Ni-doped ZnS-CdS composite and their magnetic and photoluminescence properties, Journal of Environmental Chemical Engineering, 2021, vol. 9, issue 6, art. no. 106335, 8 p. DOI: 10.1016/j.jece.2021.106335.
7. Poornaprakash B., Chalapathi U., Poojitha P.T. et al. Co-doped ZnS quantum dots: structural, optical, photoluminescence, magnetic, and photocatalytic properties, Journal of Superconductivity and Novel Magnetism, 2020, vol. 33, issue 2, pp. 539-544. DOI: 10.1007/s10948-019-05223-4.
8. Zhang J., Gu H. Growth of InZnP/ZnS core/shell quantum dots with wide-range and refined tunable photoluminescence wavelengths, Dalton Transactions, 2020, vol. 49, issue 18, pp. 6119-6126. DOI: 10.1039/D0DT00575D.
9. Wang X., Dai W., Li X. et al. Effects of L-cysteine on the photoluminescence, electronic and cytotoxicity properties of ZnS:O quantum dots, Journal of Alloys and Compounds, 2020, vol. 825, art. № 154052, 8 p. DOI: 10.1016/j.jallcom.2020.154052.
10. Goktas A., Tumbul A., Aba Z., Kilic A., Aslan F. Enhancing crystalline/optical quality, and photoluminescence properties of the Na and Sn substituted ZnS thin films for optoelectronic and solar cell applications; a comparative study, Optical Materials, 2020, vol. 107, art. no. 110073, 14 p. DOI: 10.1016/j.optmat.2020.110073.
11. Sakthivel P., Rasu K.K., Prasanna Venkatesan G.K.D., Viloria A. Influence of Ag+ and Mn2+ ions on structural, optical and photoluminescence features of ZnS quantum dots, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, vol. 241, art. no. 118666, 7 p. DOI: 10.1016/j.saa.2020.118666.
12. Curcio A., Fernando da Silva L., Bernardi M.B., Longo E., Mesquita A. Nanostructured ZnS:Cu phosphor: correlation between photoluminescence properties and local structure, Journal of Luminescence, 2019, vol. 206, pp. 292-297. DOI: 10.1016/j.jlumin.2018.10.073.
13. Bo L., Weilong L., Xiaojun Z. et al. Pressure-dependent photoluminescence of CdSe/ZnS quantum dots: Critical point of different pressure regimes, Physics Letters A, 2019, vol. 383, issue 13, pp. 1483-1486. DOI: 10.1016/j.physleta.2019.01.059.
14. Jialun T., Fei L., Gaoling Y. et al. Reducing the chromaticity shifts of light-emitting diodes using gradientalloyed CdxZn1−xSeyS1−y@ZnS core shell quantum dots with enhanced high-temperature photoluminescence, Advanced Optical Materials, 2019, vol. 7, issue 10, art. no. 1801687, 9 p. DOI: 10.1002/adom.201801687.
15. Sakthivel P., Prasanna Venkatesan G.K.D., Kamalraj S., Muthukrishnan P. Structural, optical, photoluminescence and electrochemical behaviours of Mg, Mn dual‑doped ZnS quantum dots, Journal of Materials Science: Materials in Electronics, 2019, vol. 30, issue 13, pp. 11984-11993. DOI: 10.1007/s10854-019-01551-2.
16. Kramynin S.P., Zobov E.M., Zobov M.E. Decomposition of AIIB VI semiconductor compounds integral photoluminescence spectra using mathematical and computer analysis, Journal of Luminescence, 2022, vol. 252, art. no. 119432, 8 p. DOI: 10.1016/j.jlumin.2022.119432.
17. Kovalenko A.V., Vovk S.M., Plakhtii Ye.G. Sum decomposition method for gaussian functions comprising an experimental photoluminescence spectrum, Journal of Applied Spectroscopy, 2021, vol. 88, issue 2, pp. 357-362. DOI: 10.1007/s10812-021-01182-8.
18. Alsid S.T., Barry J.F., Pham L.M. et al. Photoluminescence decomposition analysis: a technique to characterize N-V creation in diamond, Physical Review Applied, 2019, vol. 12, issue 4, pp. 044003-1-044003-20. DOI: 10.1103/PhysRevApplied.12.044003.
19. Zlokazov V.B., Utyonkov V.K. , Tsyganov Yu.S. VSHEC – a program for the automatic spectrum calibration, Computer Physics Communications, 2013, vol. 184, issue 2, pp. 428-431. DOI: 10.1016/j.cpc.2012.09.023.
20. O'Haver T.C., Fell A.F., Smith G. et al. Numerical methods for generating derivative spectra, Analytical Proceedings, 1982, vol. 19, issue 1, pp. 22-46. DOI: 10.1039/AP9821900022.