Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Stress relaxation under tension by accompanyed current in ultrafine-grain titanium

O.E. Korolkov, V.V. Stolyarov

Mechanical Engineering Research Institute of RAS

DOI: 10.26456/pcascnn/2023.15.135

Original article

Abstract: The article studies the effect of stress relaxation caused by strain stops and pulsed current on the tensile deformation behavior of Grade 4 ultrafine-grained titanium. The samples were deformed in the following modes: without current; continuously with current; with periodic current supply, periodic current supply during stops of strain. The microhardness of the working zone of the tested specimens was studied. Fracture studies of the failure zone were carried out. It is shown that, as a result of the continuous introduction of current during tension, the flow stresses decrease, and the elongation to failure increases. Periodic introduction of current, accompanied by strain stops, leads to a maximum increase in the relative elongation to failure due to stress relaxation. The relaxation effect of the pulsed current is manifested in a decrease in microhardness and the transition of the fracture type from a dimple-cup fracture to a predominantly dimple fracture.

Keywords: stress relaxation, tension, titanium, nanostructure, electroplastic effect, pulsed current, microhardness, fractography

  • Oleg E. Korolkov – Junior Researcher, Mechanical Engineering Research Institute of RAS
  • Vladimir V. Stolyarov – Dr. Sc., Chief Researcher, Mechanical Engineering Research Institute of RAS

Reference:

Korolkov, O.E. Stress relaxation under tension by accompanyed current in ultrafine-grain titanium / O.E. Korolkov, V.V. Stolyarov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 135-147. DOI: 10.26456/pcascnn/2023.15.135. (In Russian).

Full article (in Russian): download PDF file

References:

1. Hariharan K., Majidi O., Kim C. et al. Stress relaxation and its effect on tensile deformation of steels,Materials & Design (1980- 2015), 2013, vol. 52, pp. 284-288. DOI: 10.1016/j.matdes.2013.05.088.
2. Fox A. Effect of temperature on stress relaxation of several metallic materials, Residual Stress and Stress Relaxation, Sagamore Army Materials Research Conference Proceedings, ed. by E. Kula, V. Weiss, New York, Springer, 1982, vol. 28, chapter 11, pp. 181-203. DOI: 10.1007/978-1-4899-1884-0_11.
3. Klunnikova Yu.V., Anikeev M.V., Filimonov A.V. The thermoelastic stresses during laser annealing of titanium dioxide on a sapphire substrate, St. Petersburg Polytechnic University Journal - Physics and Mathematics, 2022, vol. 15, issue 3, pp. 100-110. DOI: 10.18721/JPM.15308.
4. Zhang, X. Zhao Q., Cai Z., Pan J. Effects of magnetic field on the residual stress and structural defects of Ti6Al-4V, Metals, 2020, vol. 10, issue 1, art. no. 141, 12 p. DOI: 10.3390/met10010141.
5. Baltayev T.A., Kushaliyev D.K., Yermanova B.A. Ul'trazvukovoy metod stabilizatsii mekhanicheskikh i geometricheskikh parametrov izdeliy [Ultrasonic method of stabilization of mechanical and geometric parameters of products], Vestnik Vostochno-Kazakhstanskogo gosudarstvennogo tekhnicheskogo universiteta im. D. Serikbayeva [Bulletin of D. Serikbayev East Kazakhstan technical university], 2019, no. 2, pp. 99-104 (In Russian).
6. Liang P. C., Lin K.L. Non-deformation recrystallization of metal with electric current stressing, Journal of Alloys and Compounds, 2017, vol. 722, pp. 690-697. DOI: 10.1016/j.jallcom.2017.06.032.
7. Komaristaya K.O. O relaksatsii napryazhenij i razrusheniya v nanostrukturnykh tverdykh telakh [On stress relaxation and fracture in nanostructured solids], 2-ya Mezhdunarodnoj nauchno-prakticheskoj konferentsii «Resursosberezhenie i ekologiya stroitel'nykh materialov, izdelij i konstruktsij» [2nd International Scientific and Practical Conference «Resource Conservation and Ecology of Building Materials, Products and Structures»]: proceedings in 2 vol., Kursk, October 1, Kursk: The Southwest State University, 2019, vol. 1, pp. 197-199. (In Russian).
8. Krasnikov V., Mayer A., Bezborodova P., Gazizov M. Effect of copper segregation at low-angle grain boundaries on the mechanisms of plastic relaxation in nanocrystalline aluminum: an atomistic study, Materials, 2023, vol. 16, issue 8, art. no. 3091, 18 p. DOI: 10.3390/ma16083091.
9. Sheng Y., Hua Y., Wang X. et al. Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties. Materials, 2018, vol. 11, issue 2, art. no. 185, 25 p. DOI: 10.3390/ma11020185.
10. Semenova I., Polyakova V., Dyakonov G., Polyakov A. Ultrafine-grained titanium-based alloys: structure and service properties for engineering applications, Advanced Engineering Materials, 2022, vol. 22, issue 1, art. no. 1900651, 13 p. DOI: 10.1002/adem.201900651.
11. Majchrowicz K., Sotniczuk A., Malicka J., et al. Thermal stability and mechanical behavior of ultrafinegrained titanium with different impurity content. Materials, 2023, vol. 16, issue 4, art. no. 1339, 13 p. DOI: 10.3390/ma16041339.
12. Eipert I., Sivaswamy G., Bhattacharya R. et al. Improvement in ductility in commercially pure titanium alloys by stress relaxation at room temperature, Key Engineering Materials, 2014, vol. 611-612, pp. 92-98. DOI: 10.4028/www.scientific.net/kem.611-612.92.
13. Polyakov A.V., Gunderov D.V., Raab G.I., Soshnikova Ye.P. Evolyutsiya mikrostruktury titana Grade 4 c izmeneniyem stepeni deformatsii pri RKUP-CONFORM [Evolution of the Grade 4 titanium microstructure with a change in the degree of deformation during ECAP-CONFORM]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta [Vestnik USATU], 2011, vol. 15, no 1 (41). pp. 95-100 (In Russian).
14. ASTM F67-06. Standard specification for unalloyed titanium, for surgical implant applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). Available at: https://www.astm.org/f0067-06.html. (accessed 01.09.2023).
15. Stolyarov V., Calliari I., Gennari C. Features of the interaction of plastic deformation and pulse current in various materials. Materials Letters, 2021, vol. 299, art. no. 130049, 9 p. DOI: 10.1016/j.matlet.2021.130049.
16. Kim M. -J., Yoon S., Park S. et al. Elucidating the origin of electroplasticity in metallic materials. Applied Materials Today, 2020, vol. 21, art. no. 100874, 13 p. DOI: 10.1016/j.apmt.2020.100874.
17. Conrad H. Electroplasticity in metals and ceramics. Materials Science and Engineering, 2000, vol. 287, issue 2, pp. 276-287. DOI: 10.1016/S0921-5093(00)00786-3.
18. Ao D.-W., Chu X.-R., Lin S.-X. et al. Hot tensile behaviors and microstructure evolution of Ti-6Al-4V titanium alloy under, Acta Metallurgica Sinica (English Letters), 2018, vol. 31, issue12, pp. 1287-1296. DOI: 10.1007/s40195-018-0735-3.
19. Zhao S., Zhang R., Chong Y. et al. Minor defect reconfiguration in a Ti–Al alloy via electroplasticity, Nature Materials, 2021, vol. 20, pp. 468-472. DOI: 10.1038/s41563-020-00817-z.
20. Korolkov O. E., Pakhomov M. A., Stolyarov V. V. Elektroplasticheskij effekt v titanovykh splavakh pri ikh rastyazhenii [The electroplastic effect in titanium alloys under tension], Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2022, vol. 88, no. 10, pp. 73-82. DOI: 10.26896/1028-6861-2022-88-10-73-82 (In Russian).
21. Stolyarov V.V., Korolkov O.E., Pesin A.M., Raab G.I. Deformation behavior under tension with pulse current of ultrafine-grain and coarse-grain CP titanium. Materials, 2023, vol. 16, art. no. 191, 10 p. DOI: 10.3390/ma16010191.
22. Korolkov O.E., Pakhomov M.A., Polyakov A.V. et al. Vliyaniye razmera zerna i skvazhnosti na mekhanicheskoye povedeniye titana pri rastyazhenii s impul'snym tokom [Effect of grain size and duty ratio on the mechanical behavior of titanium under tension with pulsed current]. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 639-651. DOI: 10.26456/pcascnn/2022.14.639. (In Russian).
23. Ruszkiewicz B.J., Grimm T., Ragai I. et al. A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect, Journal of Manufacturing Science & Engineering, 2017, vol. 139, issue 11, art. no. 110801, 15 p. DOI: 10.1115/1.4036716.

⇐ Prevoius journal article | Content | Next journal article ⇒