Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


The fractal dimension behaviour of the domain patterns in ferrite-garnet films

A.D. Zigert, G.G. Dunaeva, N.B. Kuz`min, E.M. Semenova, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2023.15.098

Original article

Abstract: In this work, using a set of experimental techniques and specialized software, we studied bismuth-containing ferrite garnet films of various thicknesses and with different stoichiometric compositions grown on gadolinium gallium garnet substrates. The limiting magnetic hysteresis loops for defective and defect-free sections of films were obtained using the optical magnetometry method. The field dependences of the fractal dimension of magneto-optical images were also obtained. For various compositions and thicknesses of bismuth-containing ferrite-garnet films, ranges of changes in the fractal dimension were obtained. The fractal dimension was determined by the counting cube method. The mutual behavior of the field dependences of the fractal dimension and the first derivative of magnetization with respect to the field dM(H)/dH is analyzed. The characteristic features of the behavior of the first derivative of magnetization with respect to the field dM(H)/dH with a change in the film thickness, as well as for defective and defect-free sections of films, have been established.

Keywords: magnetic films, ferrite garnets, bulk defects, domain structure, fractal dimension, dM(H)/dH dependence

  • Alexandr D. Zigert – Senior Lecturer, Applied Physics Department, Tver State University
  • Galina G. Dunaeva – 2nd year postgraduate student, Assistant, Condensed Matter Physic Department, Tver State University
  • Nickolay B. Kuz`min – 1st year graduate student, Physical Chemistry Department, Tver State University
  • Elena M. Semenova – – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Zigert, A.D. The fractal dimension behaviour of the domain patterns in ferrite-garnet films / A.D. Zigert, G.G. Dunaeva, N.B. Kuz`min, E.M. Semenova, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 98-107. DOI: 10.26456/pcascnn/2023.15.098. (In Russian).

Full article (in Russian): download PDF file

References:

1. Mallmann E.J.J., Sombra A.S.B., Goes J.C., Fechine P.B.A. Yttrium iron garnet: properties and applications review, Solid State Phenomena, 2013, vol. 202, pp. 65-96. DOI: 10.4028/www.scientific.net/SSP.202.65.
2. Zvezdin А.К., Kotov V.A. Modern magnetooptics and magnetooptical materials. New York, Taylor & Francis Croup, 1997, 404 p.
3. Scheunert G., Heinonen O., Hardeman R. et al. A review of high magnetic moment thin films for microscale and nanotechnology applications, Applied Physics Reviews, 2016, vol. 3, issue 1, pp. 011301-1-011301-44. DOI: 10.1063/1.4941311.
4. Herzer G. Magnetization process in nanocrystalline ferromagnets, Materials Science and Engineering: A, 1991, vol. 133, pp. 1-5. DOI: 10.1016/0921-5093(91)90003-6.
5. Iskhakov R.S., Komogortsev S.V. Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets, The Physics of Metals and Metallography, 2011, vol. 112, issue 7, pp. 666-681. DOI: 10.1134/S0031918X11070064.
6. Kim D.-H., Cho Y.-C., Choe S.-B., Shin S.-C. Correlation between fractal dimension and reversal behavior of magnetic domain in Co / Pd nanomultilayers, Applied Physics Letters, 2003, vol. 82, no. 21, pp. 3698-3700. DOI: 10.1063/1.1578185.
7. Komogortsev S.V., Iskhakov R.S., Fel’k V.A. Fractal dimension effect on the magnetization curves of exchange-coupled clusters of magnetic nanoparticles, Journal of Experimental and Theoretical Physics, 2019, vol. 128, issue 5, pp. 754-760. DOI: 10.1134/S1063776119040095.
8. Polyakova O.P., Akimova M.L., Polyakova P.A. Remagnetization of a fractal magnetic structure, Bulletin of the Russian Academy of Sciences: Physics, 2020, vol. 84, issue 2, pp. 166-168. DOI: 10.3103/S106287382002029X.
9. Ivanova A.I., Semenova E.M., Dunaeva G.G., Ovcharenko S.V., Tretyakov S.A., Zigert A.D. Vliyanie defektov na magnitnye kharakteristiki ferrit-granatovykh plenok [Influence of defects on magnetic characteristics of ferrite-garnet films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 103-112. DOI: 10.26456/pcascnn/2020.12.103. (In Russian).
10. Zigert A.D., Dunaeva G.G., Sdobnyakov N.Yu. Fraktal'nyj analiz labirintnoj domennoj struktury ferritgranatovykh plenok v protsesse peremagnichivaniya [Fractal analysis of the maze-like domain structure of ferrite-garnet films in the process of magnetization], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 11, pp. 134-145. DOI: 10.26456/pcascnn/2021.13.134. (In Russian).
11. Zigert A.D., Semenova E.M., Kuz`min N.B., Sdobnyakov N.Yu. Fractal analysis of magneto-optical images of a magnet surface after exposure to a pulsed field, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 101-107. DOI: 10.26456/pcascnn/2022.14.101. (In Russian).
12. Zigert A.D., Dunaeva G.G., Semenova E.M. et al. Fractal dimension behaviour of maze domain pattern in ferrite-garnet films during magnetisation reversal, Journal of Superconductivity and Novel Magnetism, 2022, vol. 35, issue 8, pp. 2187-2193. DOI: 10.1007/s10948-022-06301-w.
13. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
14. Brylkin Yu.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherokhovatoj poverkhnosti na osnove teorii fraktalov [Testing a rough surface relief modeling algorithm based on fractal theory, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta], [Proceedings of the KabardinoBalkarian State University], 2014, vol. IV, no. 5, pp. 86-89. (In Russian).
15. Otsu N. A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 1979, vol. 9, issue 1, pp. 62-66. DOI: 10.1109/TSMC.1979.4310076.
16. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.08.2023).
17. Han B.-S., Li D., Zheng D.-J., Zhou Y. Fractal study of magnetic domain patterns, Physical Review B, 2002, vol. 66, issue 1, pp. 014433-1-014433-5. DOI: 10.1103/PhysRevB.66.014433.
18. Dovbnya L.A., Naumov D.E., Khramov B.V. Fractal model of magnetization reversal in a strained garnet ferrite film, Journal of Experimental and Theoretical Physics Letters, 2001, vol. 73, issue 7, pp. 366-369. DOI: 10.1134/1.1378121.
19. Bathany C., Romancer M.L., Armstrong J.N., Chopra H.D. Morphogenesis of maze-like magnetic domains, Physical Review B, 2010, vol. 82, issue 18, pp. 184411-1-184411-14. DOI: 10.1103/PhysRevB.82.184411. DOI: 10.1103/PhysRevB.82.184411.

⇐ Prevoius journal article | Content | Next journal article ⇒