Investigation of acoustic, optical and photorefractive properties of multicrystals of lithium niobate doped with zinc in the area of concentrations of 5,38-9,0 mol.% Zn
I.N. Efremov, S.M. Masloboeva, I.V. Biryukova, N.A. Teplyakova, M.N. Palatnikov
I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
DOI: 10.26456/pcascnn/2023.15.085
Original article
Abstract: Obtaining optical materials based on lithium niobate with controlled optical properties is animportant task of modern materials science. To date the problem of obtaining heavily doped LiNbO3 crystals of optical quality with a macroscopically uniform impurity distribution has not been solved. In this work a comparative analysis of studies of the acoustic, optical and photorefractive properties of LiNbO3:Zn lithium niobate single crystals obtained by direct and homogeneous doping from melts with concentrations of 5,38-9,0 mol% Zn has been carried out. The following methods have been used: piezoacoustics, photoinduced light scattering and laser conoscopy. The values of the static piezoelectric modulus have been determined. According to these values, all crystals are single-domain. Studies of crystals have confirmed the absence of a photorefractive effect in them. It was established that LiNbO3:Zn crystals grown on the basis of the method of homogeneous doping with concentrations in the melt of 6,8-9,0 mol% Zn are characterized by the highest structural and optical uniformity. This is of interest for the technology of growing large zinc-doped lithium niobate crystals by the Czochralski method.
Keywords: lithium niobate, zinc doping, single crystal, static piezoelectric module, photoinduced light scattering, laser conoscopy, optical uniformity
- Ilya N. Efremov – Junior Researcher, Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Sofia M. Masloboeva – Ph. D., Assistant Professor, Leading Researcher, Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Irina V. Biryukova – Ph. D., Senior Researcher, Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Natalya A. Teplyakova – Ph. D., Senior Researcher, Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and acting Head of Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
Reference:
Efremov, I.N. Investigation of acoustic, optical and photorefractive properties of multicrystals of lithium niobate doped with zinc in the area of concentrations of 5,38-9,0 mol.% Zn / I.N. Efremov, S.M. Masloboeva, I.V. Biryukova, N.A. Teplyakova, M.N. Palatnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 85-97. DOI: 10.26456/pcascnn/2023.15.085. (In Russian).
Full article (in Russian): download PDF file
References:
1. Furukawa Y., Sato M., Kitamura K. et al. Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios, The Journal of Applied Physics, 1992, vol. 72, issue 8, pp. 3250-3254. DOI: 10.1063/1.351444.2.
2. Fontana M., Chah K., Aillerie M. et al. Optical damage resistance in undoped LiNbO3 crystals, Optical Materials, 2001, vol.16, issue 1-2, pp. 111-117. DOI: 10.1016/S0925-3467(00)00066-5.
3. Bryan D.A., Gerson R., Tomaschke H.E. Increased optical damage resistance in lithium niobate, Applied Physics Letters, 1984, vol. 44, issue 9, pp. 847-849. DOI: 10.1063/1.94946.
4. Volk T.R., Rubinina N.M., Woehlecke M. Optical-damage-resistant Impurities in lithium niobate, Journal of the Optical Society of America B: Optical Physics, 1994, vol. 11, issue 9, pp. 1681-1687. DOI: 10.1364/JOSAB.11.001681.
5. Abdi F, Fontana M.D., Aillerie M. et al. Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties, The Journal of Applied Physics A, 2006, vol. 83, issue 3, pp. 427-434. DOI: 10.1007/S00339-006-3565-5.
6. Volk T.R., Pryalkin V.I., Rubinina N.M. Optical-damage-resistant LiNbO3:Zn crystal, Optics Letters, 1990, vol. 15, issue 18, pp. 996-998. DOI: 10.1364/OL.15.000996.
7. Aillerie M., Bourson P., Mostefa M. et al. Photorefractive damage in congruent LiNbO3. Part I. Zinc doped lithium niobate crystals, The Journal of Physics: Conference Series, NAMES10: «New achievements in materials and environmental sciences», 26-29 October 2010, Nancy, France, 2013, vol. 416, art. no. 012001, 10 p. DOI: 1742-6596/416/1/012001.
8. Sidorov N.V., Bobreva L.A., Masloboeva S.M. et al. Synthesis of homogeneous doping with zinc charge of lithium niobate and comparative study of LiNbO3:Zn crystals of different genesis, Inorganic Materials: Applied Research, 2019. vol. 10, issue 5, pp. 1196-1203. DOI: 10.1134/S2075113319050307.
9. Palatnikov M.N., Sidorov N.V., Makarova O.V., Biryukova I.V. Fundamental'nye aspekty tekhnologii sil'no legirovannykh kristallov niobata litiya [Fundamental aspects of the technology of heavily doped lithium niobate crystals]. Apatity, KNC RAN Publ., 2017, 241 p. (In Russian).
10. Palatnikov M.N., Biryukova I.V., Masloboeva S.M. et al. The search of homogeneity of LiNbO3 crystals grown of charge with different genesis, The Journal of Crystal Growth, 2014, vol. 386, pp. 113-118. DOI: 10.1016/j.jcrysgro.2013.09.038.
11. Zhao L., Wang X., Wang B. et al. ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements, Applied Physics B, 2004, vol. 78, issue 6, pp. 769-774. DOI: 10.1007/s00340-004-1503-9.
12. Zhang Y., Xu Y.H., Li M.H. et al. Growth and properties of Zn doped lithium niobate crystal, The Journal of Crystal Growth, 2001, vol. 233, issue 3, pp. 537-540. DOI: 10.1016/S0022-0248(01)01614-1.
13. Chernaya T.S., Volk T.R., Verin I.A. et al. Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality, Crystallography Reports, 2008, vol. 53, issue 4, pp. 573-578. DOI: 10.1134/S106377450804007X.
14. Sidorov N.V., Palatnikov M.N., Teplyakova N.A. et al. Photorefractive properties of congruent lithium niobate crystals doped with zinc, Inorganic Materials: Applied Research, 2016, vol. 7, issue 2, pp. 170-176. DOI: 10.1134/S2075113316020209.
15. Sidorov N.V., Pikoul O.Yu., Kruk A.A. et al. Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and raman light scattering methods, Optics and spectroscopy, 2015, vol. 118, issue 2, pp. 259-268. DOI: 10.1134/S0030400X15020174.
16. Palatnikov M.N., Sidorov N.V., Kadetova A.V. et al. Investigation of structural and optical homogeneity of LiNbO3:ZnO crystals of different genesis, Inorganic Materials: Applied Research, 2020, vol. 11, issue 2, pp. 320-329. DOI: 10.1134/S207511332002029X.
17. Masloboeva S.M., Efremov I.N., Biryukova I.V. et al. Growth and characterization of a boron-doped lithium niobate single crystal, Inorganic Materials, 2020, vol. 56, issue 11, pp. 1147-1152. DOI: 10.1134/S0020168520110072.
18. Sidorov N.V., Pikoul O.Yu., Teplyakova N.A., Palatnikov M.N. Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svojstv nelinejno-opticheskogo kristalla niobata litiya [Laser conoscopy and photoinduced light scattering in research of properties of optically nonlinear lithium niobate crystal]. Moscow, RAS Publ., 2019, 350 p. (In Russian).
19. Biryukova I.V.. Masloboeva S.M., Efremov I.N. et al. Preparation and characterization of lithium niobate single crystals doped with 4.02–5.38 mol % Zn, Inorganic Materials, 2023, vol. 59, issue 2, pp. 164-170. DOI: 10.1134/S0020168523020048.