Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Features of the localization of dopping cations Tb3+ in a LiNbO3 crystal in the concentration range 0,1-2,21 wt.%

L.A. Bobreva1, N.V. Sidorov1, M.N. Palatnikov1, A.Yu.. Pyatyshev2

1 Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
2 P.N. Lebedev Physical Institute of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2023.15.055

Original article

Abstract: LiNbO3:Tb (0,1 wt.%), LiNbO3:Tb (0,48 wt.%), and LiNbO3:Tb (2,21 wt.%) crystals were studied by the infrared absorption spectroscopy in the area of valence vibrations of OH- -groups. These crystals were grown by Czochralski method employing direct alloying of blend of the congruent composition. It was found that when the concentration of point defect centers of the cationic sublattice VLi was higher, than the concentration of impurity point defects TbLi, an absorption band with the frequency of 3487cm-1  was registered in the IR spectrum. This absorption band is associated with the violation of stoichiometry and the formation of a complex defect (VLi – OН) in the LiNbO3:Tb (0,1 wt.%), and LiNbO3:Tb (0,48 wt.%) crystals. A further increase in the concentration of the alloying impurity leads to a change in the O-O bond length, which affects the OH-bond length and the appearance of a new absorption band with a frequency of 3493 cm-1, which corresponds to the complex defect (TbLi – OН) in the LiNbO3 crystal. Due to non-uniform admixture in the LiNbO3:Tb crystal, clusters are formed to which the absorption bands with frequencies in the range of from 3100-3403 cm-1 to 3510-3580 cm-1 in the spectrum.

Keywords: single crystal, lithium niobate, rare-earth ion, valence group vibrations, complex defects

  • Lyubov A. Bobreva – Ph. D., Researcher, Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head, Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head, Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry  Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Alexsandr Yu.. Pyatyshev – Ph. D., Senior Researcher, Raman laboratories, P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Reference:

Bobreva, L.A. Features of the localization of dopping cations Tb3+ in a LiNbO3 crystal in the concentration range 0,1-2,21 wt.% / L.A. Bobreva, N.V. Sidorov, M.N. Palatnikov, A.Yu.. Pyatyshev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 55-63. DOI: 10.26456/pcascnn/2023.15.055. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sidorov N.V., Volk T.P., Mavrin B.N., Kalinnikov V.T. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyi spektr, polyaritony [Lithium niobate: defects, photorefraction, vibrational spectrum, polaritons]. Moscow, Nauka Publ., 2003, 255 p. (In Russian).
2. Palatnikov M.N., Sidorov N.V., Makarova O.V., Biryukova I.V. Fundamental'nye aspekty tekhnologii sil'no legirovannykh kristallov niobata litiya [Fundamental aspects of the technology of heavily doped lithium niobate crystals]. Apatity, KSC RAS Publ., 2017, 241 p. (In Russian).
3. Kuz'minov Yu.S. Elektroopticheskij i nelinejnoopticheskij kristall niobata litiya [Electro-optical and nonlinear-optical crystal of lithium niobate]. Moscow, Nauka Publ., 1987, 264 p. (In Russian).
4. Iyi N., Kitamura K., Izumi F. et al. Comparative study of defect structures in lithium niobate with different compositions, Journal of Solid State Chemistry, 1992, vol. 101, issue 2, pp. 340-352. DOI: 10.1016/0022-4596(92)90189-3.
5. Donnerberg H.J., Tomlinson S.M., Catlow C.R.A., Schirmer O. F. Computer – simulation studies of intrinsic defects in LiNbО3, Physical Review B, 1989, vol. 40, issue 17, pp. 11909-11916 DOI: 10.1103/PhysRevB.40.11909.
6. Bermúdez V., Serrano M., Tornero J., Diéguez E. Er incorporation into congruent LiNbO3 crystals, Solid State Communications, 1999, vol. 112, issue 12, pp. 699-703. DOI: 10.1016/S0038-1098(99)00419-6.
7. Ryba-Romanowski W., Golab S., Dominiak-Dzik G. et al. Influence of temperature on luminescence of terbium ions in LiNbO3, Applied Physics Letters, 2001, vol. 78, issue 23, pp. 3610-3611. DOI: 10.1063/1.1376660.
8. Cabrera J.M., Olivares J., Carrascosa M. et al. Hydrogen in lithium niobate, Advances in Physics, 1996, vol. 45, issue 5, pp. 349-392. DOI: 10.1080/00018739600101517.
9. Lengyel K., Péter Á., Kovács L. et al. Growth, defect structure, and THz application of stoichiometric lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040601-1-040601-28. DOI: 10.1063/1.4929917.
10. Arizmendi L., López-Barberá F.J. Lifetime of thermally fixe holograms in LiNbO3 crystals doped with Mg and Fe, Applied Physics B, 2007, vol. 86, issue 1, pp. 105-109. DOI: 10.1007/s00340-006-2417-5.
11. Lifante G., Cussó F., Jaque F. et al. Site-selective spectroscopy of Nd3+ in LiNbО3:Nd and LiNbО3: Nd, Mg crystals, Chemical Physics Letters, 1991, vol. 176, issue 5, pp. 483-488. DOI: 10.1016/0009-2614(91)90241-Z.
12. Palatnikov M.N., Aleshina L.A., Sidorova O.V. et al. The structure of LiNbO3:Tb crystals with various chemical compositions, Technical Physics, 2021, vol. 66, issue 7, pp. 909-916. DOI: 10.1134/S1063784221060141.
13. Bodziony T., Kaczmarek S.M. EPR and optical measurements of weakly doped LiNbO3:Er, Physica B: Condensed Matter, 2007,vol. 400, issue 1-2, pp. 99-105. DOI: 10.1016/j.physb.2007.06.032.
14. Malovichko G., Bratus V., Grachev V., Kokanyan E. Electron paramagnetic resonance and electron-nuclear double resonance of nonequivalent Yb3+ centers in stoichiometric lithium niobate, Physica Status Solidi b, 2008, vol. 246, issue 1, pp. 215-225. DOI: 10.1002/pssb.200844164.
15. Kadetova A.V., Tokko O.V., Prusskii A.I. et al. Intrinsic stacking fault of the ilmenite type in the structure of lithium niobate crystals of various compositions, Materialia, 2023, vol. 28, art. no. 101770, pp. 101770-101778. DOI: 10.1016/j.mtla.2023.101770.
16. Sidorov N.V., Palatnikov M.N., Gorelik V.S., Sverbil P.P. Second-order Raman spectra of a LiNbO3:Tb crystal, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, vol. 266, art. no. 120445, pp. 120445-120450. DOI: 10.1016/j.saa.2021.120445.
17. Rahman M.K.R., Riscob B., Bhatt R. et al. Investigations on crystalline perfection, Raman spectra and optical characteristics of transition metal (Ru) co-doped Mg:LiNbO3 single crystals, ACS Omega, 2021, vol. 6, issue16, pp. 10807-10815. DOI: 10.1021/acsomega.1c00452.

⇐ Prevoius journal article | Content | Next journal article ⇒