Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Investigation of the structural features of LiNbO3:Gd (0.002-0.26 wt.%) crystals by IR absorption spectra in the region of valence vibrations of hydrogen bonds

L.A. Bobreva, N.V. Sidorov, M.N. Palatnikov, A.N. Gosteva

Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

DOI: 10.26456/pcascnn/2023.15.046

Original article

Abstract: Nonlinearly optical single crystals LiNbO3:Gd (0.001-0.26 wt.%) were grown by theCzochralskii method using the technology of direct doping charge of congruent composition. The defect structure of crystals in the region of valence vibrations of hydrogen bonds was studied by IR absorption spectroscopy. It was found that in the region of small concentrations of the doping impurity gadolinium on the IR spectrum there is a decrease in the widths of absorption bands. The gadolinium impurity with the concentration of 0.26 wt.% leads to a significant deformation of the oxygen octahedron due to the large ionic radius of the gadolinium cation and an increase in the O-O length. A new absorption band at 3488 cm-1 corresponding to the VLi-OH complex defect is registered on the IR spectrum. The calculation of the volume concentration of OH-groups showed the lowest value for LiNbO3congr crystal and the highest for LiNbO3:Gd(0.005 wt.%), which is related to the process of doping impurity entring into the structure and the increase in the number of point defect centers VLi necessary to compensate the structural defect GdLi2+.

Keywords: lithium niobate, defects, IR spectroscopy, hydrogen bonds, complex defects

  • Lyubov A. Bobreva – Ph. D., Researcher, Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head, Sector of Vibrational Spectroscopy of Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head, Materials of Electronic Engineering Laboratory, Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
  • Alevtina N. Gosteva – Ph. D., Researcher, Laboratory of physico-chemical methods of analysis, Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»

Reference:

Bobreva, L.A. Investigation of the structural features of LiNbO3:Gd (0.002-0.26 wt.%) crystals by IR absorption spectra in the region of valence vibrations of hydrogen bonds / L.A. Bobreva, N.V. Sidorov, M.N. Palatnikov, A.N. Gosteva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 46-54. DOI: 10.26456/pcascnn/2023.15.046. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sidorov N.V., Volk T.P., Mavrin B.N., Kalinnikov V.T. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyi spektr, polyaritony [Lithium niobate: defects, photorefraction, vibrational spectrum, polaritons]. Moscow, Nauka Publ., 2003, 255 p. (In Russian).
2. KemlinV., Jegouso D., Debray J. et al. Dual-wavelength source from 5% MgO:PPLN cylinders for the characterization of nonlinear infrared crystals, Optics Express, 2013, vol. 21, issue 23, pp. 28886-28891. DOI: 10.1364/OE.21.028886.
3. Murray R.T., Runcorn T.H., Guha S., Taylor J.R. High average power parametric wavelength conversion at 3.31–3.48 μm in MgO:PPLN, Optics Express, 2017, vol. 25, issue 6, pp. 6421-6430. DOI: 10.1364/OE.25.006421.
4. Iyi N., Kitamura K., Izumi F. et al. Comparative study of defect structures in lithium niobate with different compositions, Journal of Solid State Chemistry, 1992, vol. 101, issue 2, pp. 340-352. DOI: 10.1016/0022- 4596(92)90189-3.
5. Lengyel K., Kovacs L., Peter A. et al. The effect of stoichiometry and Mg doping on the Raman spectra of LiNbO3:Mg crystals, Applied Physics B: Lasers and Optics, 2007, vol. 87, issue 2, pp. 317-322. DOI: 10.1007/s00340-007-2589-7.
6. Palatnikov M.N., Biryukova I.V., Makarova O.V. et al. Effect of charge mixture preparation technology on the physicochemical and optical properties of LiNbO3:Mg crystals, Inorganic Materials: Applied Research, 2016, vol. 7, issue 5, pp. 691-697. DOI: 10.1134/S2075113316050208.
7. Arizmendi L., Miguel-Sanz de E.M., Carrascosa M. Lifetimes of thermally fixed holograms in LiNbO3:Fe crystals, Optics Letters, 1998, vol. 23, issue 12, pp. 960-963. DOI: 10.1364/OL.23.000960.
8. de Miguel-Sanz E.M., Carrascosa M., Arizmendi L. Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe, Physical Review B, 2002, vol. 65, issue 16, pp. 1656101-1-1656101-7. DOI: 10.1103/PhysRevB.65.165101.
9. Bermúdez V., Serrano M., Tornero J., Diéguez E. Er incorporation into congruent LiNbO3 crystals, Solid State Communications, 1999, vol. 112, issue 12, pp. 699-703. DOI: 10.1016/S0038-1098(99)00419-6.
10. Liu J., Liu A., Chen Y. et al. Growth and optical properties of Pr-Mg co-doped LiNbO3 crystal using Bridgman method, Physica B: Condensed Matter, 2022, vol. 624, art. no. 413419. DOI: 10.1016/j.physb.2021.413419.
11. Aleshina L.A., Kadetova A.V., Sidorova O.V. Strukturnye osobennosti legirovannykh kristallov niobata litiya [Structural features of doped lithium niobate crystals], Trudy KNTs RAN: Khimiya i materialovedenie [Proceedings of the KNC RAS: Chemistry and Materials Science], 2018, vol. 9, no. 2-2, pp. 493-498. (In Russian).
12. Yang C., Tu X., Wang S. et al. Growth and properties of Pr3+ doped LiNbO3 crystal with Mg2+ incorporation: A potential material for quasi-parametric chirped pulse amplification, Optical Materials, 2020, vol. 105, art. no 109893, 7 p. DOI: 10.1016/j.optmat.2020.109893.
13. Cabrera J.M., Olivares J., Carrascosa M. et al. Hydrogen in lithium niobate, Advances in Physics, 1996, vol. 45, issue 5, pp. 349-392. DOI: 10.1080/00018739600101517.
14. Lengyel K., Péter Á., Kovács L. et al. Growth, defect structure, and THz application of stoichiometric lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040601-1-040601-28. DOI: 10.1063/1.4929917.
15. Arizmendi L., Lopez-barbera F.J. Lifetime of thermally fixe holograms in LiNbO3 crystals doped with Mg and Fe, Applied Physics B, 2007, vol. 86, issue 1, pp. 105-109. DOI: 10.1007/s00340-006-2417-5.
16. Palatnikov M.N., Sidorov N.V., Makarova O.V., Biryukova I.V. Fundamental'nye aspekty tekhnologii sil'no legirovannykh kristallov niobata litiya [Fundamental aspects of the technology of heavily doped lithium niobate crystals]. Apatity, KSC RAS Publ., 2017, 241 p. (In Russian).
17. Syuy A.V., Sidorov N.V., Antonycheva E.A. Fotorefraktivnye svojstva i osobennosti stroeniya nelinejnoopticheskogo kristalla niobata litiya [Photorefractive properties and structure features of nonlinear optical crystal of lithium niobate]. Khabarovsk, DVGUPS Publ., 2011, 107 p. (In Russian).
18. Klauer S., Wöhlecke M., Kapphan S. Influence of the H-D isotopic substitution on the protonic conductivity in LiNbO3 crystal, Physical Review B, 1992, vol. 45, issue 6, pp. 2786-2799. DOI: 10.1103/physrevb.45.2786.
19. Kovács L. , Rebouta L., Soarest J. C. et al On the lattice site of trivalent dopants and the structure of Mg2+ - OH- M 3+ defects in LiNbO3:Mg crystals, Journal of Physics: Condensed Matter, 1993, vol. 5, no. 7, pp. 781-794. DOI: 10.1088/0953-8984/5/7/006.
20. Xue D., He X. Dopant occupancy and structural stability of doped lithium niobate crystals, Physical Review B, 2006, vol. 73, issue 6, pp. 064113-1-064113-7. DOI: 10.1103/PhysRevB.73.064113.
21. Kovács L., Szaller Zs., Lеngyel K., Corradi G. Hydroxyl ions in stoichiometric LiNbO3 crystals doped with optical damage resistant ions, Optical Materials, 2014, vol. 37, pp. 55-58. DOI: 10.1016/j.optmat.2014.04.043.

⇐ Prevoius journal article | Content | Next journal article ⇒