Gas-sensitive composite nanostructures based on zinc oxide for detecting organic solvent vapors
S.S. Nalimova1, Z.V. Shomakhov2, K.V. Gerasimova1, K.N. Punegova1, A.M. Guketlov2, R.M. Kalmykov2
1 Saint Petersburg Electrotechnical University «LETI»
2 Kabardino- Balkarian State University
DOI: 10.26456/pcascnn/2022.14.678
Original article
Abstract: The paper shows the possibilities of using ZnO-Fe composite structures as gas-sensitive layers for detecting organic solvent vapors exemplifying on isopropyl alcohol. Composite structures were formed based on zinc oxide nanorods synthesized by the hydrothermal method, due to changes in their composition in a ferrous sulfate solution. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy. It is shown that when using a ferrous sulfate solution with a concentration of 0,025 mol/l, iron and zinc atoms are observed on the surface. An increase in the concentration of the solution to 0,05 mol/l leads to the deposition of iron oxide particles on the surface of the nanorods. The study of some gas-sensitive characteristics was carried out at 250°C when exposed to isopropyl alcohol vapors in the concentration range from 200 to 1000 ppm. It was found that the response value of composite structures ZnO-Fe (0,025) exceeds the corresponding value for the zinc oxide nanorods, that may be due to the high content of oxygen vacancies in the composite sample.
Keywords: zinc oxide, gas sensors, composite nanostructures, X-ray photoelectron spectroscopy, organic solvent
- Svetlana S. Nalimova – Ph. D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Zamir V. Shomakhov – Ph. D., Docent, Department of Electronics and Information Technologies, Kabardino- Balkarian State University
- Ksenia V. Gerasimova – 1st year undergraduate student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Ksenia N. Punegova – 2nd year undergraduate student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Aslan M. Guketlov – 4th year student, Institute of Informatics, Electronics and Robotics, Kabardino- Balkarian State University
- Rustam M. Kalmykov – Ph. D., Associate Professor of the Department of Electronics and Digital Information Technologies, Kabardino- Balkarian State University
Reference:
Nalimova, S.S. Gas-sensitive composite nanostructures based on zinc oxide for detecting organic solvent vapors / S.S. Nalimova, Z.V. Shomakhov, K.V. Gerasimova, K.N. Punegova, A.M. Guketlov, R.M. Kalmykov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 678-687. DOI: 10.26456/pcascnn/2022.14.678. (In Russian).
Full article (in Russian): download PDF file
References:
1. Gardon M., Guilemany J.M. A review on fabrication, sensing mechanisms and performance of metal oxide gas sensors, Journal of Material Science: Materials in Electronics, 2013, vol. 24, issbe 5, pp. 1410-1421. DOI: 10.1007/s10854-012-0974-4.
2. Moshnikov V.A., Gracheva I.E., Kuznezov V.V. et al. Hierarchical nanostructured semiconductor porous materials for gas sensors, Journal of Non-Crystalline Solids, 2010, vol. 356, issue 37-40, pp. 2020-2025. DOI: 10.1016/j.jnoncrysol.2010.06.030.
3. Comini E. Metal oxide nano-crystals for gas sensing, Analytica Chimica Acta, 2006, vol. 568, issue 1-2, pp. 28-40. DOI: 10.1016/j.aca.2005.10.069.
4. Jiang B., Lu J., Han W. et al. Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor, Sensors and Actuators: B. Chemical, 2022, vol. 357, art. № 131333, 11 p. DOI: 10.1016/j.snb.2021.131333.
5. Ryabko A.A., Nalimova S.S., Mazing D.S. et al. Sensibilizatsiya nanosterzhnej zno kolloidnymi kvantovymi tochkami AgInS2 dlya adsorbtsionnykh gazovykh sensorov s fotoaktivatsiej [Sensitization of zno nanorods by AgInS2 colloidal quantum dots for adsorption gas sensors with light activation], Zhurnal tekhnicheskoj fiziki [Technical Physics], 2022, vol. 92, issue 6, pp. 845-851. DOI: 10.21883/JTF.2022.06.52514.15-22. (In Russian).
6. Bobkov A., Luchinin V., Moshnikov V., Nalimova S., Spivak Y. Impedance spectroscopy of hierarchical porous nanomaterials based on por-Si, por-Si incorporated by Ni and metal oxides for gas sensors, Sensors, 2022, vol. 22, issue4, art. № 1530, 14 p. DOI: 10.3390/s22041530.
7. Zhang D., Yang Z., Wu Z., Dong G. Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing, Sensors and Actuators: B. Chemical, 2019, vol. 283, pp. 42-51. DOI: 10.1016/j.snb.2018.11.133.
8. Sun S., Wang M., Chang X. et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit, Sensors and Actuators: B. Chemical, 2020, vol. 304, art. № 127274, 12 p. DOI: 10.1016/j.snb.2019.127274.
9. Lee J.E., Lim C.K., Park H.J. et al. ZnO–CuO core-hollow cube nanostructures for highly sensitive acetone gas sensors at the ppb level, ACS Applied Materials & Interfaces, 2020, vol. 12, issue31, pp. 35688-35697. DOI: 10.1021/acsami.0c08593.
10. Wu K., Luo Y., Li Y., Zhang C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors, The Beilstein Journal of Nanotechnology, 2019, vol. 10, pp. 2516–2526. DOI: 10.3762/bjnano.10.242.
11. Liu X., Liu J., Liu Q. et al. Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor, Ceramics International, 2018, vol. 44, issue 17, pp. 21091-21098. DOI: https://doi.org/10.1016/j.ceramint.2018.08.146.
12. Yin F., Li Y., Yue W. et al. Sn3O4/rGO heterostructure as a material for formaldehyde gas sensor with a wide detecting range and low operating temperature, Sensors and Actuators: B. Chemical, 2020, vol. 312, art. no. 127954, 10 p. DOI: 10.1016/j.snb.2020.127954.
13. Ryabko A.A., Bobkov А.А., Nalimova S.S. et al. Gazochuvstvitel'nost' nanostrukturirovannykh pokrytij na osnove nanosterzhnej oksida tsinka pri kombinirovannoj aktivatsii [Gas sensitivity of nanostructured coatings based on zinc oxide nanorods under combined activation], Zhurnal tekhnicheskoj fiziki [Technical Physics], 2022, vol. 92, issue 5, pp. 758-764. DOI: 10.21883/JTF.2022.05.52382.314-21. (In Russian).
14. Ryabko A.A., Mazing D.S., Bobkov A.A. et al. Effekt interfejsnogo legirovaniya sistemy nanosterzhnej oksida tsinka [The effect of interface alloying of the zinc oxide nanorods system], Fizika tverdogo tela [Physics of Solid State], 2022, vol. 64, issue 11, pp. 1681-1689. DOI: 10.21883/FTT.2022.11.53320.408. (In Russian).
15. Anikina M.A., Ryabko A.A., Nalimova S.S., Maximov A.I. Synthesis and study of zinc oxide nanorods for semiconductor adsorption gas sensors, Journal of Physics: Conference Series, 2021, vol. 1851, art. no. 012010, 5 p. DOI: 10.1088/1742-6596/1851/1/012010.
16. Jing L., Xu Z., Sun X., Shang J., Cai W. The surface properties and photocatalytic activities of ZnO ultrafine particles, Applied Surface Science, 2001, vol. 180, issue 3-4, pp. 308-314. DOI: 10.1016/S0169-4332(01)00365-8.
17. Xie F., Yang M., Song Z.-Y. et al. Highly sensitive electrochemical detection of Hg(II) promoted by oxygen vacancies of plasma-treated ZnO: XPS and DFT calculation analysis, Electrochimica Acta, 2022, vol. 426, art. № 140757, 9 p. DOI: 10.1016/j.electacta.2022.140757.
18. Zhang B., Wang J., Wei Q. et al. visible light-induced room-temperature formaldehyde gas sensor based on porous three-dimensional ZnO nanorod clusters with rich oxygen vacancies, ACS Omega, 2022, vol. 7, issue 26, pp. 22861-22871. DOI: 10.1021/acsomega.2c02613.