Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Electrodeposition of silver nanoparticles for the development of electrochemical sensors: a short review

P.A. Nikolaychuk

Kurgan State University, Kurgan, Russia

DOI: 10.26456/pcascnn/2022.14.688

Short review

Abstract: In the present review the studies performed in the last two decades devoted to the electrodeposition of silver nanoparticles on the surface of carbon electrodes and their implementation in analytical chemistry are described. Usually graphite or glassy carbon electrodes (including screen-printed electrodes) are used, and the electrodeposition is performed from the solutions of potassium nitrate and silver nitrate during a few minutes. Silver nanoparticles or modified nanocomposites including silver nanoparticles are then immobilized on the surface of the electrodes, and obtained electrochemical sensors are capable to determine various compounds using different voltammetric methods with excellent selectivity and very good linearity range and precision. The described methods of analysis allow the determination of microgram quantities of hydrogen peroxide, glucose, cholesterol, methyl parathion, Pb2+ ions, chloramphenicol and metronidazole, doxorubicin, entacapone, tyrosine and tryptophan, lamotrigine, chromium (VI), antimony (III), trinitrotoluene, oligonucleotides and the bacterium Pseudomonas aeruginosa.

Keywords: silver nanoparticles, glassy carbon electrode, graphite electrode, electrodeposition, electroanalysis, voltammetry

  • Pavel A. Nikolaychuk – Dr. rerum naturalium (Germany), Junior Researcher, Laboratory «Advanced materials for industry and biomedicine», Kurgan State University, Kurgan, Russia

Reference:

Nikolaychuk, P.A. Electrodeposition of silver nanoparticles for the development of electrochemical sensors: a short review / P.A. Nikolaychuk // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 688-698. DOI: 10.26456/pcascnn/2022.14.688. (In Russian).

Full article (in Russian): download PDF file

References:

1. Petrii О.А. Electrosynthesis of nanostructures and nanomaterials, Russian Chemical Reviews, 2015, vol. 84, issue 2, pp. 159-193. DOI: 10.1070/RCR4438.
2. Ivanova O.S., Zamborini F.P. Size-dependent electrochemical oxidation of silver nanoparticles, Journal of the American Chemical Society, 2010, vol. 132, issue 1, pp. 70-72. DOI: 10.1021/ja908780g.
3. Ng K.H., Liu H., Penner R.M. Subnanometer silver clusters exhibiting unexpected electrochemical metastability on graphite, Langmuir, 2000, vol. 16, issue 8, pp. 4016-4023. DOI: 10.1021/la9914716.
4. Isse A.A., Gottardello S., Maccato C., Gennaro A. Silver nanoparticles deposited on glassy carbon. Electrocatalytic activity for reduction of benzyl chloride, Electrochemistry Communications, 2006, vol. 8, issue 11, pp. 1707-1712. DOI: 10.1016/j.elecom.2006.08.001.
5. Yang G.-W., Gao G.-Y., Wang C. et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 2008, vol. 46, issue 5, pp. 747-752. DOI: 10.1016/j.carbon.2008.01.026.
6. Zhao S., Zhang K., Sun Y., Sun C. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol–gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis, Bioelectrochemistry, 2006, vol. 69, issue 1, pp. 10-15. DOI: 10.1016/j.bioelechem.2005.09.004.
7. Chayka M.Y., Novikova V.V., Kravchenko T.A., Starodubova S.P. Elektroosazhdenie chastits serebra na uglerodnom elektrode i ikh rol' v reaktsii elektrovosstanovleniya kisloroda [Electrodeposition of silver particles on the carbon electrode and their role in the reaction of oxygen electroreduction], Kondensirovannye sredy i mezhfaznye granicy [Condensed Matter and Interphases], 2012, vol. 14, no. 4, pp. 500-507. (In Russian).
8. Hernández-Santos D., González-García M.B., García A.C. Metal-nanoparticles based electroanalysis, Electroanalysis, 2002, vol. 14, issue 18, pp. 1225-1235. DOI: 10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z.
9. Pifferi V., Marona V., Longhi M., Falciola L. Characterization of polymer stabilized silver nanoparticles modified glassy carbon electrodes for electroanalytical applications, Electrochimica Acta, 2013, vol. 109, pp. 447-453. DOI: 10.1016/j.electacta.2013.07.194.
10. Luo X., Morrin A., Killard A.J., Smyth M.R. Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, 2006, vol. 18, issue 4, pp. 319-326. DOI: 10.1002/elan.200503415.
11. Merkoçi A., Aldavert M., Marı́n S., Alegret S. New materials for electrochemical sensing V: Nanoparticles for DNA labeling, TrAC Trends in Analytical Chemistry, 2005, vol. 24, issue 4, pp. 341-349. DOI: 10.1016/j.trac.2004.11.007.
12. Chen H., Wang Y., Qu J., Dong S. Self-assembled silver nanoparticle monolayer on glassy carbon: an approach to SERS substrate, Journal of Raman Spectroscopy, 2007, vol. 38, issue 11, pp. 1444-1448. DOI: 10.1002/jrs.1792.
13. Abdugaffarova K.K., Dorogov M.V., Aifantis E.C. Osobennosti formirovaniya i rosta nitevidnykh mikrokristallov v protsesse elektroosazhdeniya serebra [Features of formation and growth of the nedle-like microscrystals in the silver electrodeposition process], Vektor nauki Tol'jattinskogo gosudarstvennogo universiteta [Science Vector of Togliatti State University], 2017, no. 3(41), pp. 11-16. DOI: 10.18323/2073-5073-2017-3-11-16. (In Russian).
14. Zoval J.V., Stiger R.M., Biernacki P.R., Penner R.M. Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane, The Journal of Physical Chemistry, 1996, vol. 100, issue 2, pp. 837-844. DOI: 10.1021/jp952291h.
15. Yin B., Ma H., Wang S., Chen S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone), The Journal of Physical Chemistry B, 2003, vol. 107, issue 34, pp. 8898-8904. DOI: 10.1021/jp0349031.
16. Yola M. L., Gupta V. K., Eren T. et al. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin, Electrochimica Acta, 2014, vol. 120, pp. 204-211. DOI: 10.1016/j.electacta.2013.12.086.
17. Li M.-G., Shang Y.-J., Gao Y.-C. et al. Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor, Analytical Biochemistry, 2005, vol. 341, issue 1, pp. 52-57. DOI: 10.1016/j.ab.2005.02.014.
18. Mazur M. Electrochemically prepared silver nanoflakes and nanowires, Electrochemistry Communications, 2004, vol. 6, issue 4, pp. 400-403. DOI: 10.1016/j.elecom.2004.02.011.
19. Mohanty U.S. Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, Journal of Applied Electrochemistry, 2011, vol. 41, issue 3, pp. 257-270. DOI: 10.1007/s10800-010-0234-3.
20. Quinn B.M., Dekker C., Lemay S. G. Electrodeposition of noble metal nanoparticles on carbon nanotubes, Journal of the American Chemical Society, 2005, vol. 127, issue 17, pp. 6146-6147. DOI: 10.1021/ja0508828.
21. Afraz A., Rafati A. A., Hajian A. Analytical sensing of hydrogen peroxide on Ag nanoparticles–multiwalled carbon nanotube-modified glassy carbon electrode, Journal of Solid State Electrochemistry, 2013, vol. 17, issue 7, pp. 2017-2025. DOI: 10.1007/s10008-013-2057-8.
22. Raoof J. B., Ojani R., Hasheminejad E., Rashid-Nadimi S. Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix [6] arene matrix and its application for electrocatalytic reduction of H2O2, Applied Surface Science, 2012, vol. 258, issue 7, pp. 2788-2795. DOI: 10.1016/j.apsusc.2011.10.133.
23. Safavi A., Maleki N., Farjami E. Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide, Electroanalysis, 2009, vol. 21, issue 13, pp. 1533-1538. DOI: 10.1002/elan.200804577.
24. Song Y., Cui K., Wang L., Chen S. The electrodeposition of Ag nanoparticles on a type I collagen-modified glassy carbon electrode and their applications as a hydrogen peroxide sensor, Nanotechnology, 2009, vol. 20, no. 10, art. no. 105501, 8 p. DOI: 10.1088/0957-4484/20/10/105501.
25. Wang Q., Zheng J. Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination, Microchimica Acta, 2010, vol. 169, issue 3, pp. 361-365. DOI: 10.1007/s00604-010-0356-7.
26. Welch C.M., Banks C.E., Simm A.O., Compton R.G. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide, Analytical and Bioanalytical Chemistry, 2005, vol. 382, issue1, pp. 12-21. DOI: 10.1007/s00216-005-3205-5.
27. Zhou Y., Yin H., Meng X. et al. Direct electrochemistry of sarcosine oxidase on graphene, chitosan and silver nanoparticles modified glassy carbon electrode and its biosensing for hydrogen peroxide, Electrochimica Acta, 2012, vol. 71, pp. 294-301. DOI: 10.1016/j.electacta.2012.04.014.
28. Wu S., Zhao H., Ju H. et al. Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose, Electrochemistry Communications, 2006, vol. 8, issue 8, pp. 1197-1203. DOI: 10.1016/j.elecom.2006.05.013.
29. Nantaphol S., Chailapakul O., Siangproh W. Sensitive and selective electrochemical sensor using silver nanoparticles modified glassy carbon electrode for determination of cholesterol in bovine serum, Sensors and Actuators B: Chemical, 2015, vol. 207, part A, pp. 193-198. DOI: 10.1016/j.snb.2014.10.041.
30. Bian Y., Li C., Li H. para-Sulfonatocalix [6] arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion, Talanta, 2010, vol. 81, issue 3, pp. 1028-1033. DOI: 10.1016/j.talanta.2010.01.054.
31. Sivasubramanian R., Sangaranarayanan M.V. Detection of lead ions in picomolar concentration range using underpotential deposition on silver nanoparticles-deposited glassy carbon electrodes, Talanta, 2011, vol. 85, issue 4, pp. 2142-2147. DOI: 10.1016/j.talanta.2011.07.057.
32. Zhai H., Liang Z., Chen Z. et al. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode,
Electrochimica Acta, 2015, vol. 171, pp. 105-113. DOI: 10.1016/j.electacta.2015.03.140.
33. Guo H., Jin H., Gui R. et al. Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin, Sensors and Actuators B: Chemical, 2017, vol. 253, pp. 50-57. DOI: 10.1016/j.snb.2017.06.095.
34. Baghayeri M., Tehrani M. B., Amiri A. et al. A novel way for detection of antiparkinsonism drug entacapone via electrodeposition of silver nanoparticles/functionalized multi-walled carbon nanotubes as an amperometric sensor, Materials Science and Engineering: C, 2016, vol. 66, pp. 77-83. DOI: 10.1016/j.msec.2016.03.077.
35. Jin G.P., Peng X., Chen Q. Z. Preparation of novel arrays silver nanoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan's oxidation, Electroanalysis, 2008, vol. 20, issue. 8, pp. 907-915. DOI: 10.1002/elan.200704084.
36. Calvo M.E.B., Renedo O.D., Martínez M.J.A. Determination of lamotrigine by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes, Talanta, 2007, vol. 74, issue 1, pp. 59-64. DOI: 10.1016/j.talanta.2007.05.026.
37. Domínguez-Renedo O., Ruiz-Espelt L., García-Astorgano N., Arcos-Martínez M. J. Electrochemical determination of chromium (VI) using metallic nanoparticle-modified carbon screen-printed electrodes, Talanta, 2008, vol. 76, issue 4, pp. 854-858. DOI: 10.1016/j.talanta.2008.04.036.
38. Renedo O.D., Martínez M.J. A. A novel method for the anodic stripping voltammetry determination of Sb (III) using silver nanoparticle-modified screen-printed electrodes, Electrochemistry Communications, 2007, vol. 9, issue 4, pp. 820-826. DOI: 10.1016/j.elecom.2006.11.016.
39. Zhang Y., Zhang K., Ma H. Electrochemical DNA biosensor based on silver nanoparticles/poly (3-(3-pyridyl) acrylic acid)/carbon nanotubes modified electrode, Analytical Biochemistry, 2009, vol. 387, issue 1, pp. 13-19. DOI: 10.1016/j.ab.2008.10.043.
40. Roushani M., Shahdost-Fard F. A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe, Microchimica Acta, 2018, vol. 185, issue 12, pp. 558. DOI: 10.1007/s00604-018-3098-6.
41. Roushani M., Sarabaegi M., Pourahmad F. Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles, Microchimica Acta, 2019, vol. 186, issue 11, pp. 725. DOI: 10.1007/s00604-019-3858-y.

⇐ Prevoius journal article | Content | Next journal article ⇒