Influence of the parameters of acoustic waves on the characteristics of cavitation bubbles in liquid aluminum
R.Yu. Karmokova1, A.M. Karmokov1, O.A. Molokanov1, A.I. Khasanov2, A.A. Kanametov1
1 Kabardino-Balkarian State University
2 Chechen State University named after A.A. Kadyrov
DOI: 10.26456/pcascnn/2022.14.141
Short communication
Abstract: Calculation of parameters of a cavitation bubble during irradiation of aluminum melt with acoustic waves is carried out. The dependences of the Mach number on the amplitude at frequencies of 1-20 kHz used in the experiments are obtained. A relationship has been established between the resonant frequency of acoustic waves and the size of cavitation bubbles in liquid aluminum. Allowing the possibility of generalizing the Minnert linear theory to the case of viscous liquids, the dependence of the maximum radius of cavitation bubbles on the frequency of the acoustic field at different temperatures is obtained, taking into account the surface tension, density and viscosity of liquid aluminum. It has been established that with an increase in the frequency of the acoustic field, the radii of the cavitation bubbles decrease. The temperature change inside the cavitation bubble is estimated as a function of the bubble radius at any moment of its compression under adiabatic conditions. It is shown that when the bubble radius decreases to a critical size, the temperature inside it can increase by an order of magnitude.
Keywords: aluminum, acoustic waves, cavitation, cavitation bubble, Mach number
- Rita Yu. Karmokova – Ph. D., Senior Lecturer, Electronics and Digital Information Technologies Department, Kabardino-Balkarian State University
- Ahmed M. Karmokov – Dr. Sc., Professor, Electronics and Digital Information Technologies Department, Kabardino-Balkarian State University
- Oleg A. Molokanov – Ph. D., Scientific Director, Electronics and Digital Information Technologies Departmen, Kabardino-Balkarian State University
- Aslambek I. Khasanov – Ph. D., Associate Professor, Acting Head of the Department of Physical Electronics, Chechen State University named after A.A. Kadyrov
- Anzor A. Kanametov – Ph. D., Docent, Electronics and Digital Information Technologies Department, Kabardino-Balkarian State University
Reference:
Karmokova, R.Yu. Influence of the parameters of acoustic waves on the characteristics of cavitation bubbles in liquid aluminum / R.Yu. Karmokova, A.M. Karmokov, O.A. Molokanov, A.I. Khasanov, A.A. Kanametov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 141-148. DOI: 10.26456/pcascnn/2022.14.141. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kundas S.P., Lanin V.L., Tyavlovskij M.D. et al. Ul'trazvukovye protsessy v proizvodstve izdelij elektronnoj tekhniki [Ultrasonic processes in the production of electronic products], ed. by A.P. Dostanko. Minsk, Bestprint, 2002, vol. 1, 404 p.
2. Primenenie ul'trazvuka v promyshlennosti [Application of ultrasound in industry], ed. by A.I. Markova. Moscow, Mashinostroenie Publ.; – Sofia: Tekhnika, 1976. – 239 p. (In Russian).
3. Karmokova R.Yu., Rekhviashvili S.Sh., Karmokov A.M. Vliyanie akusticheskogo vozdejstviya na rasplav alyuminiya [Effects of acoustical action on aluminum melt], Fizika i ximiya obrabotki materialov [Physics and Chemistry of Materials Treatment], 2012, no. 5, pp. 20-26. (In Russian).
4. Kármán T. von Aerodynamics. Selected topics in light of their historical development. New York, Cornell University Press, 2004, 224 p.
5. Minnaert M. On musical air-bubbles and the sounds of running water, Philosophical Magazine Series 7, 1933, vol. 16, issue 104, pp. 235-248. DOI: 10.1080/14786443309462277.
6. Khmelev, V.N. Khmelev S.S., Golykh R.N., Barsukov R.V. Povyshenie effektivnosti ul'trazvukovoj kavitatsionnoj obrabotki vyazkikh i dispersnykh zhidkikh sred [Improving the efficiency of ultrasonic cavitation treatment of viscous and dispersed liquid media], Polzunovskij vestnik [Polzunovskiy Bulletin], 2010, no. 3, pp. 321 325. (In Russian).
7. Najdich Yu.V., Ermolenko B.N. Metod «bol'shoj kapli» dlya opredeleniya poverkhnostnogo natyazheniya i plotnosti rasplavlennykh metallov pri vysokikh temperaturakh [«Large drop» method for determination of surface tension and density of molten metals at high temperatures]. Fizika metallov i metallovedenie [Physics of Metals and Metallography], 1961, vol. 11, no 6. pp.883-888. (In Russian).
8. Levin E.S. Ayushina T.D., Gel'd P.V. Politermy plotnosti i poverkhnostnoj ehnergii zhidkogo alyuminiya [Polytherms of density and surface energy of liquid aluminum]. Teplofizika vysokikh temperatur [High Temperature Journal], 1968, vol. 6, no 3, pp. 432-436. (In Russian).
9. Gol'cova, E.I. Eksperimental'noe issledovanie plotnosti zhidkogo alyuminiya do ~1500°C [Experimental study of the density of liquid aluminum up to ~1500°С]. Teplofizika vysokikh temperatur [High Temperature Journal], 1965, vol. 3, no. 3. pp. 483-486. (In Russian).
10. Über die Eigenschaften metallischer Schmelzen VIII. Die Dichte von flüssigem Aluminium und einigen Aluminiumlegierungen E. Gebhardt, M. Becker, S. Dorner, Zeitschrift für Metallkunde, 1953, vol. 44, issue 12, pp. 573-575. DOI: 10.1515/ijmr-1953-441205.
11. Yatsenko S.P., Kononenko V.I., Suhman A.L. Eksperimental'nye issledovaniya temperaturnoj zavisimosti poverkhnostnogo natyazheniya i plotnosti olova, indiya, alyuminiya i galliya [Experimental studies of the temperature dependence of the surface tension and density of tin, indium, aluminum and gallium], Teplofizika vysokikh temperatur [High Temperature Journal], 1972, vol. 10, issue. 1, pp. 66-71. (In Russian).
12. Ehl'piner I.E. Ul'trazvuk. Fiziko-khimicheskoe i biologicheskoe deistvie [Ultrasound. Physico-chemical and biological action]. Moscow, Fizmatgiz Publ., 1963, 420 p. (In Russian).
13. Karmokova, R.YU., Karmokov A.M. Pereraspredelenie primesej v mezhfaznom sloe splava alyuminiya s kavitatsionnymi puzyrkami [Redistribution of impurities in the interface layer of melted aluminum with cavitation bubbles], Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2015, vol. 17, no 3, pp. 392-398. (In Russian).