Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Influence of deformation processing on magnetocaloric effect of Heusler alloys

A.Yu. Karpenkov1, P.A. Rakunov1, I.I. Musabirov2, G.G. Dunaeva1

1 Tver State University
2 Institute for Metals Superplasticity Problems of Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.149

Original article

Abstract: This paper presents the results of complex studies of the effect of deformation obtained by the multiple isothermal forging method on the magnetocaloric properties of the Ni-Mn-Ga Heusler alloy system. Direct measurements of the adiabatic temperature change show that cycling the sample in a magnetic field μ0ΔH=1,85 T can decrease the maximum of ΔTad(T)0→H by the value corresponding to the latent heat of transition. Neglecting this transformation effect leads to an overestimation of the magnetocaloric effect of materials with the first-order transition. An analysis of the deformation treatment effect on the phase transformation temperatures and the magnitude of the magnetocaloric effect indicates that the application of multiple isothermal forging leads to a small decrease of the magnetization and the magnitude of the magnetocaloric effect. Deformation also causes a shift in the phase transition temperature towards low temperatures and decrease of the temperature hysteresis width.

Keywords: Heusler alloys, multiple isothermal forging, magnetocaloric effect, magnetostructural phase transition

  • Aleksei Yu. Karpenkov – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Pavel A. Rakunov – 1st year post graduate student, Assistant, Condensed Matter Physics Department, Tver State University
  • Irek I. Musabirov – Ph. D., Senior Researcher, Institute for Metals Superplasticity Problems of Russian Academy of Sciences
  • Galina G. Dunaeva – 1st year post graduate student, Assistant, Condensed Matter Physics Department, Tver State University

Reference:

Karpenkov, A.Yu. Influence of deformation processing on magnetocaloric effect of Heusler alloys / A.Yu. Karpenkov, P.A. Rakunov, I.I. Musabirov, G.G. Dunaeva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 149-158. DOI: 10.26456/pcascnn/2022.14.149. (In Russian).

Full article (in Russian): download PDF file

References:

1. Caron L., Ou Z.Q., Nguyen T.T. et al. On the determination of the magnetic entropy change in materials with first-order transitions, Journal of Magnetism and Magnetic Materials, 2009, vol. 321, issue 21, pp. 3559-3566. DOI: 10.1016/j.jmmm.2009.06.086.
2. Liu J., Scheerbaum N., Lyubina J., Gutfleisch O. Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni–Mn–In–Co. Applied Physics Letters, 2008, vol. 93, issue 10, pp. 102512-1-102512- 3. DOI: 10.1063/1.2981210.
3. Çakιr Ö., Acet M. Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements, Applied Physics Letters, 2012, vol. 100, issue 20, pp. 202404-1-202404-4. DOI: 10.1063/1.4717181.
4. Guillou F., Brück E. Tuning the metamagnetic transition in the (Co,Fe)MnP system for magnetocaloric purposes, Journal of Applied Physics, 2013, vol. 114. issue 14, pp. 143903-1-143903-7. DOI: 10.1063/1.4824543.
5. Skokov K.P., Müller K.H., Moore J.D., et al. Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4, Journal of alloys and compounds, 2013, vol. 552. pp. 310-317. DOI: 10.1016/j.jallcom.2012.10.008.
6. Chirkova A., Skokov K.P., Schultz L. et. al. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions, Acta Materialia, 2016, vol. 106. pp. 15-21. DOI: 10.1016/j.actamat.2015.11.054.
7. Chulist R., Skrotzki W., Oertel C.G. et al. Cyclic fibre texture in hot extruded Ni50Mn29Ga21, International Journal of Materials Research, 2012, vol. 103, issue 5, pp. 575-579. DOI: 10.3139/146.110735.
8. Wei L., Zhang X., Qian M. et al. Introducing equiaxed grains and texture into Ni-Mn-Ga alloys by hot extrusion for superplasticity, Materials & Design, 2016, vol. 112, pp. 339-344. DOI: 10.1016/j.matdes.2016.09.076.
9. Kaletina Y., Greshnova E., Kaletin A. Structure and microhardness of the three-component Ni-Mn-In alloy after different modes of thermal cycling treatment, Letters on Materials, 2017, vol. 7, issue 3, pp. 287-291. DOI: 10.22226/2410-3535-2017-3-287-291.
10. Karpenkov D.Y., Karpenkov A.Y., Skokov K.P. et al. Pressure dependence of magnetic properties in La (Fe,Si)13: multistimulus responsiveness of caloric effects by modeling and experiment, Physical Review Applied, 2020, vol. 13. issue 3, pp. 034014-1-034014-15. DOI: 10.1103/PhysRevApplied.13.034014.
11. Liu J., Gottschall T., Skokov K.P., Moore J.D., Gutfleisch O. Giant magnetocaloric effect driven by structural transitions, Nature Materials, 2012, vol. 11, issue 7, pp. 620-626. DOI: 10.1038/nmat3334.
12. Khovaylo V.V., Skokov K.P., Koshkid’ko Y.S. et al. Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study, Physical Review B, 2008, vol. 78, issue 6, pp. 060403-1-060403-4. DOI: 10.1103/PhysRevB.78.060403.
13. Musabirov I.I., Safarov I.M., Galeev R.M. et al. Anisotropy of the thermal expansion of a polycrystalline Ni–Mn–Ga alloy subjected to plastic deformation by forgingm Physics of the Solid state, 2018, vol. 60, issue 6, pp. 1061-1067. DOI: 10.1134/S1063783418060240.
14. Karpenkov A.Yu., Rakunov P.A., Skokov K.P., Karpenkov D.Yu., Taskaev S.V. Issledovanie magnitoob"yomnogo effekta soedineniya DyCo2 pri izotermicheskom i adiabaticheskom rezhime izmeneniya magnitnogo polya [Investigation of magneto-volume effect of DyCo2 compound under isothermal and adiabatic mode of magnetic field change], Chelyabinskij fiziko-matematicheskij zhurnal [Chelyabinsk Physical and Mathematical Journal], 2020, vol. 5, no. 4-2, pp. 545-556. DOI: 10.47475/2500-0101-2020-15414. (In Russian).

Content |