Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Influence of deformation on the microsructure and magneic properties of Heusler alloys

A.I. Ivanova1, I.I. Musabirov2, E.M. Semenova1, A.D. Vasilev1, K.A. Gugutsidze1, A.Yu. Karpenkov1

1 Tver State University
2 Institute for Metals Superplasticity Problems of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.132

Original article

Abstract: This paper presents the results of studies of the effects of deformation obtained by the method of multiple isothermal forging on the microstructure and magnetic properties of the NiMnGa alloy system. It is shown that the microstructure of the initial alloy during deformation undergoes changes, grain size decreases and a two-component structure is formed. The magnetic domain structure of the original and deformed alloys was visualized by magnetic force microscopy. It is shown that the distortion of the domain shape is associated with the presence of a martensitic relief and grain boundaries, 180-degree magnetic domains are continuous within the crystallites, while they cross the flat parallel boundaries of the martensite plates. The study of temperature and field magnetization dependences of the initial and isothermal forging samples demonstrates an insignificant magnetization decrease and a shift of the phase transition temperature toward low temperatures. It’s concluded that deformation by the isothermal forging method can be considered as a way to correct the phase transition temperature in NiMnGa alloys with preservation of magnetization.

Keywords: Heusler alloys, martensitic relief, multiple isothermal forging, micro and nanostructure, magnetic domain structure, magnetostructural transition

  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physic Department, Tver State University
  • Irek I. Musabirov – Ph. D., Senior Researcher, Institute for Metals Superplasticity Problems of the Russian Academy of Sciences
  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Alexey D. Vasilev – 2nd year graduate student, Applied Physic Department, Tver State University
  • Karina A. Gugutsidze – 4th year student, Applied Physic Department, Tver State University
  • Aleksey Yu. Karpenkov – Ph. D., Docent, Condensed Matter Physics Department, Tver State University

Reference:

Ivanova, A.I. Influence of deformation on the microsructure and magneic properties of Heusler alloys / A.I. Ivanova, I.I. Musabirov, E.M. Semenova, A.D. Vasilev, K.A. Gugutsidze, A.Yu. Karpenkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 132-140. DOI: 10.26456/pcascnn/2022.14.132. (In Russian).

Full article (in Russian): download PDF file

References:

1. Otsuka K., Shimizu K., Suzuki Y. et al. Shape memory alloys, ed. by H. Funakubo. Moscow, Metallurgia Publ.,1990, 224 p. (In Russian).
2. O’Handley R.C. Modern magnetic materials: principles and applications. Hoboken New Jersey, Wiley-Interscience Publication, 1999, 768 р.
3. Webster P.J., Ziebeck K.R.A., Town S.L., Peak M.S. Magnetic order and phase transformation in Ni2MnGa, Philosophical Magazin B, 1984, vol. 49, issue 3, pp. 295-310. DOI: 10.1080/13642817408246515.
4. Vasil’ev A.N., Buchel’nikov V.D., Takagi T., Khovailo V.V., Estrin E.I. Shape memory ferromagnets, Physics-Uspekhi, 2003, vol. 46, issue 6, pp. 559-588. 10.1070/PU2003v046n06ABEH001339.
5. Buchel'nikov V.D. Vasiliev A.N., Koledov V.V. et al. Magnetic shape-memory alloys: phase transitions and functional properties, Physics-Uspekhi, 2006, vol. 49, issue 8, pp. 871-877. DOI: 10.1070/PU2006v049n08ABEH006081.
6. Grechishkin R.M., Ivanova A.I., Zigert A.D. Magnitnye svoistva i domennaya structura splavov Geislera [Magnetic properties and domain structure of Heusler alloys]. Tver, Tverskoy Gosudarstvennyj Universitet Publ., 2021, 91 p. (In Russian).
7. Buchelnikov V.D., Sokolovskiy V.V. Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb), The Physics of Metals and Metallography, 2011, vol. 112, issue 7, pp. 633-665. DOI: 10.1134/S0031918X11070052.
8. Kaletina Yu.V., Efimova E.D., Gerasimov E.G., Kaletin A.Yu. Effect of thermal cycling on structure and properties of Ni–Mn–In-based alloys, Technical Physics, 2016. V. 61, issue 12, pp. 1894-1897. DOI: 10.1134/S1063784216120197.
9. Safarov I.M., Galeyev R.M., Afonichev D.D. et al. Plasticheskaya deformatsiya splava sistemy Ni-Mn-Ga metodom vsestoronnej izotermicheskoj kovki [Plastic deformation of Ni-Mn-Ga system alloy by the method of comprehensive isothermal forging], Fizika i mekhanika materialov [Materials Physics and Mechanics], 2017, vol. 33, issue 1, pp. 124-136. DOI: 10.18720/MPM.3312017_13. (In Russian).
10. Musabirov I.I., Safarov I.M., Galeev R.M. et al. Anisotropy of the thermal expansion of a polycrystalline Ni–Mn–Ga alloy subjected to plastic deformation by forging. Physics of the Solid State, 2018, vol. 60, issue 6, pp. 1061-1067. DOI: 10.1134/S1063783418060240.
11. Musabirov I.I., Safarov I.M., Galeyev R.M. et al. The influence of forging and extrusion on the microstructure and martensitic transformation in Ni-Mn-Ga alloys, IOP Conference Series: Materials Science and Engineering, 2018, vol. 447, art. no. 012024, 4 p. DOI: 10.1088/1757-899X/447/1/012024 012024.
12. Kokorin V.V., Dubinko S.V., Babii O.M., Prokopov A.R. Magnetic domains in martensite of the Ni-Mn-Ga alloy, The Physics of Metals and Metallography, 2006, vol. 101, issue 5, pp. 446-449 DOI: 10.1134/S0031918X0605005X.
13. Heczko O., Jurek K., Ullakko K. Magnetic properties and domain structure of magnetic shape memory Ni–Mn–Ga alloy, Journal of Magnetism and Magnetic Materials, 2001, vol. 226-230, part 1, pp. 996-998. DOI: 10.1016/S0304-8853(00)01170-7.
14. Jain D., Banik S., Sharath Chandra L. et al. Magnetic Force Microscopy (MFM), Ni2MnGa, Shape Memory Alloy Actuator,
Advanced Materials Research, 2008, vol. 52, pp. 115-119. DOI: 10.4028/www.scientific.net/AMR.52.115.
15. Chen F., Gao Z.Y., Cai W., Zhao L. C. Magnetic Properties and Martensite Structures of Ni50Mn28Ga22 ferromagnetic shape memory alloy, Materials Transactions, 2006, vol. 47, issue 3, pp. 612-614. DOI: 10.2320/matertrans.47.612.
16. Neves B.R.A., Andrade M.S. Magnetic force microscopy of shape memory alloys: identifying two magnetic patterns, Microscopy and Microanalysis, 2020, vol. 5, issue S2, pp. 44-45. DOI: 10.1017/S1431927600013544.

⇐ Prevoius journal article | Content | Next journal article ⇒