Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Comparative studies of the strength properties of germanum and silicon single crystals

A.I. Ivanova, P.A. Svesnikov, K.A. Marinicheva, K.A. Gugutsidze, A.D. Vasilev, S.A. Tretiakov, A.Yu. Karpenkov

Tver State University

DOI: 10.26456/pcascnn/2022.14.120

Original article

Abstract: In this paper, we present the results of microhardness tests performed by Vickers indentation of germanium and silicon single crystals. It’s shown that in the investigated samples there is a dependence of microhardness on the crystallographic directions and the nature of the alloying impurity. Microhardness anisotropy coefficients are calculated: for germanium KII=1,2 and for silicon KII=1,3. The analysis of high-temperature annealing influence on microhardness value of germanium and silicon crystals is carried out. It has been established, that the microhardness of Ge(111) crystals grows on 12% after annealing at 550°С, the further thermal processing of germanium crystals at T=650°С considerably changes the structure and surface relief which contribute to a decrease in microhardness values. It is shown that the microhardness of silicon crystals increases by 10% after annealing at 750°C, further annealing to T=850°C leads to a decrease in microhardness. The surfaces of single crystals after high-temperature annealing have been studied; it has been established that thermal treatment at T≈0.6 Tm (Tm – the melting temperature of the single crystal) leads to the appearance of defects and a tenfold increase in the maximum height of the surface profile (from 10-12 nm to 100-200 nm).

Keywords: germanium and silicon single crystals, microhardness, Vickers method, microhardness anisotropy coefficient, interatomic bonds, dopants, high-temperature annealing, surface nanorelief, defects

  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physic Department, Tver State University
  • Pavel A. Svesnikov – 2nd year graduate student, Applied Physic Department, Tver State University
  • Kristina A. Marinicheva – 1st year postgraduate student, Applied Physic Department, Tver State University
  • Karina A. Gugutsidze – 4th year student, Applied Physic Department, Tver State University
  • Alexey D. Vasilev – 2st year graduate student, Applied Physic Department, Tver State University
  • Sergey A. Tretiakov – Ph. D., Docent, Applied Physic Department, Tver State University
  • Aleksey Yu. Karpenkov – Ph. D., Docent, Condensed Matter Physics Department, Tver State University

Reference:

Ivanova, A.I. Comparative studies of the strength properties of germanum and silicon single crystals / A.I. Ivanova, P.A. Svesnikov, K.A. Marinicheva, K.A. Gugutsidze, A.D. Vasilev, S.A. Tretiakov, A.Yu. Karpenkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 120-131. DOI: 10.26456/pcascnn/2022.14.120. (In Russian).

Full article (in Russian): download PDF file

References:

1. Claeys L., Simoen E. Germanium-based technologies:from materials to devices. Oxford, Elsevier Science, 2007, 449 p. DOI: 10.1016/B978-0-08-044953-1.X5000-5.
2. Peter Y.Yu., Cardona M. Fundamentals of semiconductors: physics and materials properties. 4th ed. Heidelberg Dordrecht London New York, Springer, 2010. XXII, 778 p. DOI: 10.1007/978-3-642-00710-1.
3. Podkopaev O.I., Shimanskii A.F., Pavlyuk T.O. Vyrashchivanie monokristallov germaniya s kontroliruemoj strukturoj, soderzhaniem primesej i opticheskimi svojstvam [Growth of germanium single crystals with controlled structure, impurity content and optical properties]. Krasnoyarsk, Siberian Federal University Publ., 2017, 152 p. (In Russian).
4. Kolmakov A.G., Terentyev V.F., Bakirov M.B. Metody izmereniya tverdosti [Hardness measurement methods]. 2nd ed. Moscow, Intermet Engineering Publ., 2005, 150 p. (In Russian).
5. Oreshko E.I., Utkin D.A., Erasov V.S., Lyakhov A.A. Metody izmereniya tverdosti materialov (obzor) [Methods of measurement of hardness of materials (review)], Trudy VIAM [Proceedings of VIAM], 2020, no. 1 (85), pp. 101-117. DOI: 10.18577/2307-6046-2020-0-1-101-117. (In Russian).
6. Glazov V.M., Vigdorovich V.N. Mikrotverdost' metallov i poluprovodnikov [Microhardness of metals and semiconductors]. Moscow, Metallurgy Publishing House, 1969, 248 p. (In Russian).
7. Brinkevich D.I., Vabishchevich S.A., Vabishchevich N.V., Prosolovich V.S., Yankovskii Yu.N. Effect of rare-earth doping on the microhardness of silicon and germanium, Inorganic Materials, 2003, vol. 39, issue 11, pp. 1109-1111. DOI: 10.1023/A:1027376820655.
8. Vabishchevich S.A., Vabishchevich N.V., Brinkevich D.I. Mikrotverdost' plastin kremniya, proshedshego getteriruyushchuyu obrabotku [Microhardness of silicon plates after gettering treatment], Perspektivnye materialy, 2005, no. 2, pp. 20-22. (In Russian).
9. Brinkevich D.I., Prosolovich V.S., Yankovski Yu.N., Vabishchevich S.A., Vabishchevich N.V. Microhardness of silicon implanted by high-energy ions, Proceedings of the VII-th International Conference Ion Implantation and Other Applications of Ions and Electrons, Kazimierz Dolny, Poland, June, 16-19, 2008. Lublin, Maria Curie-Sklodowska University, 2008, p. 105.
10. Dale J.R., Brice J.C. Etch pits in germanium and their relation to hardness. Solid-State Electronics, 1961, vol. 3, issue 2, pp. 105-106. DOI: 10.1016/0038-1101(61)90064-8.
11. Nadtochiy V.A., Alyokhin V.P., Kisilyov N.S. Anizotropiya mikroplastichnosti germaniya [Anisotropy of germanium microplasticity], Fizika i khimiya obrabotki materialov, 2005, no. 1, pp. 90-93. (In Russian).
12. Shpeizman V.V., Nikolaev V.I., Pozdnyakov A.O. et al. The effect of texturing of silicon wafer surfaces for solar photoelectric transducers on their strength properties, Technical Physics, 2020, vol. 65. issue 7, pp. 1123-1129. DOI: 10.1134/S1063784220070191.
13. Grechkina M.V., Bormontov E.N. Vliyanie impul'snogo magnitnogo polya na topograficheskie harakteristiki monokristallicheskogo germaniya [Effect of pulsed magnetic field on the topographic characteristics of single-crystal germanium], Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2017, vol. 19, no. 1, pp. 133-139. DOI:10.17308/kcmf.2017.19/185. (In Russian).
14. Anur'ev V.I. Spravochnik konstruktora-mashinostroitelya [Mechanical engineer handbook]. Moscow, Mechanical Engineering Publ., 2001, vol. 1, 920 p. (In Russian).
15. Berezina G.M., Korshunov F.P., Murin L.I. Izmerenie mikrotverdosti kremniya pri nizkotemperaturnom otzhige [Effect of low-temperature annealing on the microhardness of silicon], Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 1990, vol. 26, no. 4, pp. 683-686. (In Russian).
16. Ivanova A.I., Marinicheva K.A., Tret’yakov S.A., Ivanov A.M., Molchanov S.V., Kaplunov I.A. Temperaturnaya zavisimost' opticheskogo propuskaniya monokristallov germaniya [Temperature dependence of optical transmission of germanium single crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 177-186. DOI: 10.26456/pcascnn/2021.13.177. (In Russian).
17. Shimanskii A.F., Gorodishcheva A.N., Kopytkova S.A., Kulakovskaya T.V. Thermal stability of the properties of germanium crystals for IR optics, Journal of Physics: Conference Series, 2019, vol.1353, art. no. 12062, 7 p. DOI: 10.1088/1742-6596/1353/1/012062.
18. Tretiakov S.A., Kaplunov I.A., Ivanova A.I. Influence of roughness parameters of surface on the emissivity of germanium single crystals. Journal of Physics: Conference Series, 2021, vol. 2103, art. no. 012230, 6 p. DOI: 10.1088/1742-6596/2103/1/012230.
19. Talanin V.I., Talanin I.E. High-temperature precipitation of impurities within the Vlasov model of solids. Crystallography Reports, 2019, vol. 64, issue 4, p. 581-585. DOI: 10.1134/S1063774519040230.

⇐ Prevoius journal article | Content | Next journal article ⇒