Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


On the formation of fractal iron films

D.V. Ivanov1, A.S. Antonov1,2, E.M. Semenova1, A.I. Ivanova1, N.B. Kuz`min1, N.Yu. Sdobnyakov1

1 Tver State University
2 Tver State Agricultural Academy

DOI: 10.26456/pcascnn/2022.14.108

Original article

Abstract: The patterns of formation of the fractal relief of nanosized iron films on the mica surface are considered using the atomic force microscopy. In order to prevent the formation of an oxide layer, iron films were studied immediately after their production employing at a magnetron sputtering unit. It has been established that magnetron sputtering makes it possible to obtain island films of iron, the structural element of which are truncated nanocubes – nanopyramids. The fractal dimension of the resulting agglomerates was determined at various scales: on a scale of 5 µm Dc = 2,462±0,113; on a scale of 3 µm Dc = 2,373±0,122; on a scale of 1 µm Dc = 2,298±0,139. The distribution of the probability of detecting agglomerates on the films under study with a certain fractal dimension of the surface of iron films is estimated. The subsequent elemental analysis of the iron films showed the presence of oxygen and, consequently, the formation of ordered oxide films of the core-shell type.

Keywords: atomic force microscopy, magnetron sputtering, fractal dimension, iron films, nanopyramids

  • Dmitry V. Ivanov – Researcher, General Physics Department, Tver State University
  • Alexander S. Antonov – Ph. D., Researcher, General Physics Department, Tver State University, Associate Professor Tver State Agricultural Academy
  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
  • Nickolay B. Kuz`min – 4st year student, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Ivanov, D.V. On the formation of fractal iron films / D.V. Ivanov, A.S. Antonov, E.M. Semenova, A.I. Ivanova, N.B. Kuz`min, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 108-119. DOI: 10.26456/pcascnn/2022.14.108. (In Russian).

Full article (in Russian): download PDF file

References:

1. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
2. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
3. Brylkin Yu.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherokhovatoj poverkhnosti na osnove teorii fraktalov [Testing a rough surface relief modeling algorithm based on fractal theory], Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of the Kabardino-Balkarian State University], 2014, vol. IV, no. 5, pp. 86-89. (In Russian).
4. Zhou W., Cao Y., Zhao H. et al. Fractal analysis on surface topography of thin films: a review, Fractal and fractional, 2022, vol. 6, issue 3, art. no. 135, 30 p. DOI: 10.3390/ fractalfract6030135.
5. Torkhov N.A., Evstigneev M.P., Kokolov A.A., Babak L.I. The fractal geometry of TiAlNiAu thin film metal system and its sheet resistance (lateral size effect), Symmetry, 2021, vol. 13, issue 12, art. no. 2391, 11 p. DOI: 10.3390/sym13122391.
6. Semenova E.M., Ivanov D.V., Lyakhova M.B. et al. Fractal geometry of the nano- and magnetic domain structures of Sm–Co–Cu–Fe ferromagnetic alloy in a high coercive state, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 955-958. DOI: 10.3103/S1062873821090252.
7. Serov I.N., Bel'skaya G.N., Margolin V.I. et al. Primenenie metoda magnetronnogo raspyleniya dlya polucheniya strukturirovannykh tonkikh plenok [The application of magnetron sputtering technique for production thin films with ordered structure], Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 2003, vol. 67, issue 4, pp. 575-578. (In Russian).
8. Serov I.N., Zhabrev V.A., Margolin V.I. Investigation into the influence of fractal-matrix structurizers on the formation and growth of nanostructures, Glass Physics and Chemistry, 2004, vol. 30, issue. 1, pp. 32-50. DOI: 10.1023/B:GPAC.0000016396.36549.ad.
9. Zhou C., Li T., Wei X., Yan B. Effect of the sputtering power on the structure morphology and magnetic properties of Fe films, Metals, 2020, vol.10, issue 7, art. no. 896, 11 p. DOI: 10.3390/met10070896.
10. Myagkov V.G., Zhigalov V.S., Zharkov S.M. Fractal oxidation of amorphous iron films], Doklady Physics, 1996, vol. 41, no. 2, pp. 55-58.
11. Krim J., Heyvaert I., Van Haesendonck C., Bruynseraede Y. Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces, Physical Review Letters, 1993, vol.70, issue 1, pp.57-60. DOI: 10.1103/PhysRevLett.70.57.
12. Ivanova N.A., Baklanov A.M., Onishchuk A.A. Obrazovaniye v gazovoy faze agregatov zheleza i uglerodnykh nanostruktur s vklyucheniyami zheleza [Formation in the gas phase of iron aggregates and carbon nanostructures with iron inclusions], Khimicheskaya fizika [Chemical Physics], 2005, vol.24, no. 4, pp. 84-94. (In Russian).
13. Forrest S.R., Witten Jr T.A. Long-range correlations in smoke-particle aggregates, Journal of Physics A: Mathematical and General, 1979, vol.12, no. 5, pp. L109-L117. DOI: 10.1088/0305-4470/12/5/008.
14. Yurkov A.N., Vlasova T.V., Krikunov G.A., Kononov M.A. Ispol'zovanie planarnogo magnetrona dlya napyleniya ferromagnitnykh plenok mikronnoj i nanometrovoj tolshchiny [Planar magnetron use for micron and nanometer thickness ferromagnetic film deposition], Prikladnaya fizika [Applied Physics], 2010, no. 3, pp. 103-108. (In Russian).
15. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
16. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Poluchenie nanorazmernykh plenok platiny, obladayushchikh fraktal'nymi svojstvami [Obtaining nanosized platinum films with fractal properties], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 73-88. DOI: 10.26456/pcascnn/2020.12.073.
17. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Razlichnye skhemy polucheniya fraktal'nogo rel'efa nanorazmernykh plenok platiny [Different schemes for obtaining fractal relief of nanosized platinum films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 156-165. DOI: 10.26456/pcascnn/2021.13.156.
18. Zhao J., Baibuz E., Vernieres J. et al. Formation mechanism of Fe nanocubes by magnetron sputtering inert gas condensation, ACS Nano, 2016, vol. 10, issue 4, pp. 4684-4694. DOI: 10.1021/acsnano.6b01024.
19. Wu H., Liu W., Zheng L. et al. Facile synthesis of amorphous Ge supported by Ni nanopyramid arrays as an anode material for sodium-ion batteries, ChemistryOpen, 2019, vol. 8, issue 3, pp. 298-303 DOI: 10.1002/open.201900024.
20. Koirala K.P., Garcia H., Sandireddy V.P. et al. Bimetallic Fe–Ag nanopyramid arrays for optical communication applications, ACS Applied Nano Materials, 2021, vol. 4, issue 6, pp. 5758-5767. DOI: 10.1021/acsanm.1c00547.
21. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 15.08.2021).
22. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide]. Moscow: NT-MDT SI Publ., 2019, 582 p. (In Russian).
23. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.09.2021).
24. Douketis C., Haslett T.L., Wang Z., Moskovits M., Iannotta S. Rough silver films studied by surface enhanced Raman spectroscopy and low temperature scanning tunnelling microscopy, Progress in Surface Science, 1995, vol. 50, issue 1-4, pp. 187-195. DOI: 10.1016/0079-6816(95)00053-4.
25. Zahn W., Zösch A. The dependence of fractal dimension on measuring conditions of scanning probe microscopy, Fresenius' Journal of Analytical Chemistry, 1999, vol. 365, issue 1-3, pp. 168-172. DOI: 10.1007/s002160051466.
26. Van Put A., Vertes A., Wegrzynek D., Treiger B., Van Grieken R. Quantitative characterization of individual particle surfaces by fractal analysis of scanning electron microscope images, Fresenius' Journal of Analytical Chemistry, 1994, vol. 350, issue 7-9, pp. 440-447. DOI: 10.1007/BF00321787.
27. Mannelquist A.,Almqvist N, Fredriksson S. Influence of tip geometry on fractal analysis of atomic force microscopy images, Applied Physics A, 1998, vol. 66, Supplement issue 1, pp. S891-S895. DOI: 10.1007/s003390051262.
28. Zahn W., Zösch A. Characterization of thin-film surfaces by fractal geometry, Fresenius' Journal of Analytical Chemistry, 1997, vol. 358, issue 1-2, pp. 119-121. DOI: 10.1007/s002160050360.
29. Sdobnyakov N.Yu., Zykov T.Yu., Bazulev A.N., Antonov A.S. Opredelenie fraktal'noi razmernosti ostrovkovykh plenok zolota na slyude [Determination of the fractal dimension of island films of gold on mica], Vestnik TvGU, seriya «Fizika» [Herald of Tver State University, series «Physics»], 2009, issue 6, pp. 112-119. (In Russian).
30. Wang C.M., Baer D.R., Amonette J.E. et al. Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation, Nanotechnology, 2007, vol. 18, art. № 255603, 7 p. DOI: 10.1088/0957- 4484/18/25/255603.
31. Pratt A., Lari L., Hovorka O. et al.Enhanced oxidation of nanoparticles through strain-mediated ionic transport, Nature Materials, 2014, vol. 13, no. 1, pp. 26-30. DOI: 10.1038/NMAT3785.
32. Błoński P., Kiejna A. Structural, electronic, and magnetic properties of bcc iron surfaces, Surface Science, 2007, vol. 601, pp. 123-133. DOI: 10.1016/j.susc.2006.09.013.

⇐ Prevoius journal article | Content | Next journal article ⇒