Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Synthesis and properties of Sr-containing trycalcium phosphate

O.A. Golovanova

Omsk State University named after F.M. Dostoevsky

DOI: 10.26456/pcascnn/2021.13.829

Original article

Abstract: Sr -substituted tricalcium phosphate was obtained by precipitation from aqueous solutions. Synthetic solid phases were investigated using X-ray phase analysis, IR spectroscopy, scanning electron microscopy, energy dispersive analysis. The supernatant was examined for the presence of Ca2+ and PO43- ions to calculate the    Ca/ P ratio. It was revealed that strontium ions are part of tricalcium phosphate, but do not change its phase composition. The addition of strontium ions to the initial solution contributes to a decrease in the size of crystallites and an increase in their porosity. When studying the bioresorbability of the obtained samples using direct potentiometry, it was found that the samples containing strontium ions in their composition have a lower value of the rate of resorption. Energy dispersive analysis data confirmed that strontium ions are included in the composition of TCP samples. But with an increase in their concentration, complete replacement of calcium ions with strontium ions in the TCP structure does not occur. At the same time, the highest values of the dissolution rate are recorded in acidic media.

Keywords: crystallization, calcium phosphates, substituted tricalcium phosphate, strontium, bioresorbability

  • Olga A. Golovanova – Dr. Sc., Professor, Head of the Department of Inorganic Chemistry, Omsk State University named after F.M. Dostoevsky

Reference:

Golovanova, O.A. Synthesis and properties of Sr-containing trycalcium phosphate / O.A. Golovanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 829-840. DOI: 10.26456/pcascnn/2021.13.829. (In Russian).

Full article (in Russian): download PDF file

References:

1. James S.L., Abate D., Abate K.H. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study, The Lancet, 2018, vol. 392, issue 10159, pp. 1789-1858. DOI: 10.1016/s0140-6736(18)32279-7.
2. Lesnyak O.M., Baranova I.A., Belova K.Yu. et al. Osteoporoz v Rossijskoj Federatsii: epidemiologiya, mediko-sotsial'nye i ekonomicheskie aspekty problemy (obzor literatury) [Osteoporosis in Russian Federation: epidemiology, socio-medical and economical aspects (review)], Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia], 2018, vol. 24, no. 1, pp. 155-168. DOI: 10.21823/2311-2905-2018- 24-1-155-168. (In Russian).
3. Kivrak N., Taş A.C. Synthesis of calcium hydroxyapatitetricalcium phosphate (HA-TCP) composite bioceramics powders and their sintering behavior, Journal of the American Ceramic Society, 1998, vol. 81, issue 9, pp. 2245-2252. DOI: 10.1111/j.1151-2916.1998.tb02618.x.
4. Gibson I.R., Rehman I., Best S.M., Bonfield W. Characterization of the transformation from calciumdeficient apatite to β -tricalcium phosphate, Journal of Materials Science: Materials in Medicine, 2000, vol. 11, issue 12, pp. 799-804. DOI: 10.1023/A:1008905613182.
5. Alkhraisat M.H., Cabrejos-Azama J., Rodríguez C.R. et al. Magnesium substitution in brushite cements, Journal Materials Science and Engineering: C, 2013, vol. 33, issue 1, pp. 475-481. DOI: 10.1016/j.msec.2012.09.017.
6. Cui W., Wang S., Yang R., Zhang X. Hydrothermal synthesis of Mg -substituted tricalcium phosphate nanocrystals, MRS Communications, 2019, vol. 9, issue 3, pp. 971-978. DOI: 10.1557/mrc.2019.110.
7. Guo X., Long Y., Li W., Dai H. Osteogenic effects of magnesium substitution in nano-structured β -tricalcium phosphate produced by microwave synthesis, Journal of Materials Science, 2019, vol. 54, issue 16, pp. 11197-11212. DOI: 10.1007/s10853-019-03674-7.
8. Roy M., Fielding G.A., Bandyopadhyay A., Bose S. Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption, Biomaterials Science, 2013, vol. 1, issue – I. 1, pp. 74-82. DOI: 10.1039/c2bm00012a.
9. Hesaraki S., Farhangdoust S., Barounian M.H. Phase transformation and structural characteristics of zinc-incorporated β -tricalcium phosphate, Materials Science – Poland, 2013. vol. 31, issue 2, pp. 281-287. DOI: 10.2478/s13536-013-0103-y.
10. Zhang J., Wu H., He F. et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions, Journal Materials Science and Engineering: C, 2019, vol. 99, pp. 1199-1212. DOI: 10.1016/j.msec.2019.02.042.
11. Gomes S., Vichery C., Descamps S. et al. Cu -doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity, Acta Biomaterialia, – 2018. – V. 65. – P. 462-474. DOI: 10.1016/j.actbio.2017.10.028.
12. Bonnelye E., Chabadel A., Saltel F., Jurdic P. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone, 2008, vol. 42, issue 1, pp. 129-138. DOI: 10.1016/j.bone.2007.08.043.
13. Salamanna F., Giavaresi G., Parrilli A. et al. Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model, Journal Materials Science and Engineering: C, 2017, vol. 95, pp. 355-362. DOI: 10.1016/j.msec.2017.11.016.
14. Roy M., Bose S. Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping, Journal of Biomedical Materials Research Part A, 2012, vol. 100A, issue 9, pp. 2450-2461. DOI: 10.1002/jbm.a.34181.
15. Izmailov R.R., Golovanova O.A. Crystallization of carbonate hydroxyapatite in the presence of strontium ranelate, Crystallography Reports, 2015, vol. 60, issue 6, pp. 979-983. DOI: 10.1134/s1063774515060127.
16. He L., Dong G., Deng C. Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation, Ceramics International, 2016, vol. 42, issue 10, pp. 11918-11923. DOI: 10.1016/j.ceramint.2016.04.116.
17. Ressler A., Cvetnić M., Antunović M. et al. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone, Journal of Biomedical Materials Research – Part B Applied Biomaterials, 2020, vol. 108, issue 4, pp. 1697-1709. DOI: 10.1002/jbm.b.34515.
18. Renaudin G., Jallot E., Nedelec J.M. Effect of strontium substitution on the composition and microstructure of sol–gel derived calcium phosphates, Journal of Sol-Gel Science and Technology, 2018, vol. 51, issue 3, pp. 287-294. DOI: 10.1007/s10971-008-1854-5.
19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url:https://www.icdd.com/pdf-2 (accessed 15.06.2021).
20. Massovaya kontsentratsiya kal'tsiya v vodakh. Metodika vypolneniya izmerenij titrimetricheskim metodom s trilonom B: RD 52.24.403-2007 [Mass concentration of calcium in waters. Technique for performing titrimetric measurements with trilon B: Guidance Documents 52.24.403-2007]. Rostov na Donu: Rosgidromet Publ., 2007. 26 p. (In Russian).
21. Voda pit'evaya. Metod opredeleniya soderzhaniya polifosfatov: GOST 18309-72 [Drinking water. Method for determination of polyphosphate content: State Standard 18309-72]. Moscow, Gosstandart SSSR Publ., 1972. 5 p. (in Russian).
22. IBM SPSS Statistics. Available at: www.url: https://www.ibm.com/ru-ru/products/spss-statistics (accessed 15.06.2021).
23. Rojo L., Radley-Searle S., Fernandez-Gutierrez M. et al. The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity, Journal of Materials Chemistry B, 2015, vol. 3, issue 13, pp. 2708-2713. DOI: 10.1039/c4tb01969e.
24. Kannan S., Goetz-Neunhoeffer F., Neubauer J. et al. Synthesis and structural characterization of strontium- and magnesium-co-substituted β -tricalcium phosphate, Acta Biomaterialia, 2010. vol. 6, issue 2, pp. 571-576. DOI: 10.1016/j.actbio.2009.08.009.
25. Boanini E., GazzanoM., Nervi C. et al. Strontium and zinc substitution in β -tricalcium phosphate: an X-ray diffraction, solid state NMR and ATR-FTIR study, Journal of Functional Biomaterials, 2019, vol. 10, issue 2, art. no. 20, 15 p. DOI: 10.3390/jfb10020020.

⇐ Prevoius journal article | Content | Next journal article ⇒