Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Precipitation of hybrid hydroxyapatite / autofibrin nanocomposites

I.E. Glazov1, V.K. Krut’ko1, R.A. Vlasov2, O.N. Musskaya1, L.V. Kul’bitskaya1, A.I. Kulak1

1 Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus
2 Medical-Center SANTE Ltd. «Medandrovit»

DOI: 10.26456/pcascnn/2021.13.818

Original article

Abstract: Hybrid composites based on hydroxyapatite and autofibrin were synthesized by precipitation in a medium with pH=9. Soft precipitation conditions and rapid isolation of the composite precipitates favored preservation of a biopolymer matrix of autofibrin. An effect of fibrin macromolecules contributed to destabilization of the amorphous calcium phosphate phase and formation of stoichiometric hydroxyapatite. The medium of the citrated plasma stimulated precipitation of calcium-deficient hydroxyapatite with x≈0,1 and the Ca/P ration of 1,65 which transformed into the mixture of hydroxyapatite / β -tricalcium phosphate at 800 °С. Biomimetic apatite composites were synthesized with an addition of 30 vol. % of a Simulated Body Fluid (SBF) model solution. The effect of Mg2+, CO32-  ions of SBF promoted the stabilization of amorphous calcium phosphate and formation of carbonated hydroxyapatite that exhibited thermal stability up to 800 °С. The cummulative effect of autofibrin and ions of induced SBF provided controlling composition of the mineral part of hybrid nanocomposites without disruption of an autofibrin matrix.

Keywords: hybrid nanocomposite, hydroxyapatite, fibrin, citrated plasma, amorphous calcium phosphate, calcium-deficient hydroxyapatite, carbonated hydroxyapatite

  • Ilya E. Glazov – Junior Researcher, Laboratory of Photochemistry and Electrochemistry, Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistr, Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Roman A. Vlasov – ENT specialist, Medical-Center SANTE Ltd. «Medandrovit»
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher, Laboratory of Photochemistry and Electrochemistry, Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Ludmila V. Kul’bitskaya – Researcher, Laboratory of Physicochemical Research, Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Anatoly I. Kulak – Corresponding Member, D. Sc., Professor, Director, Institute of General and The Inorganic Chemistry of the National Academy of Sciences of Belarus

Reference:

Glazov, I.E. Precipitation of hybrid hydroxyapatite / autofibrin nanocomposites / I.E. Glazov, V.K. Krut’ko, R.A. Vlasov, O.N. Musskaya, L.V. Kul’bitskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 818-828. DOI: 10.26456/pcascnn/2021.13.818. (In Russian).

Full article (in Russian): download PDF file

References:

1. Noori A., Ashrafi S.J., Vaez-Ghaemi R. et al. A review of fibrin and fibrin composites for bone tissue engineering, International Journal of Nanomedicine, 2017, vol. 12, pp. 4937-4961. DOI: 10.2147/IJN.S124671.
2. Ehrenfest D.M.D., Rasmusson L., Albrektsson T. Classification of platelet concentrates: from pure platelet- rich plasma (P-PRP) to leucocyte-and platelet-rich fibrin (L-PRF), Trends in biotechnology, 2009, vol. 27, issue 3, pp. 158-167. DOI: 10.1016/j.tibtech.2008.11.009.
3. Tolstov D.A., Bogdan V.G. Trombotsitarnye kontsentraty: klassifikatsiya, tekhnologii polucheniya, biologicheskie effekty [Platelet concentrates: classification, production technologies, biological effects], Voennaya meditsina [Military Medicine], 2012, issue 3, pp. 141-144. (In Russian).
4. Khodakaram-Tafti A., Mehrabani D., Shaterzadeh-Yazdi H. An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery, Dental Research Journal, 2017, vol. 14, issue 2, pp. 79-86. DOI: 10.4103/1735-3327.205789.
5. Dietrich M., Heselhaus J., Wozniak J. et al. Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation, Tissue Engineering Part C: Methods, 2013, vol. 19, no. 3, pp. 216-226. DOI: 10.1089/ten.tec.2011.0473.
6. Tsuber, V.K., Lesnikovich L.A., Kulak A.I. et al. Synthesis, identification and determination of impurities in bioactive hydroxyapatite, Pharmaceutical Chemistry Journal, 2006, vol. 40, issue 8, pp. 455-458. DOI: 10.1007/s11094-006-0151-2.
7. Uskoković V. The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite, RSC Advances, 2015, vol. 5, issue 46, pp. 36614-36633. DOI: 10.1039/C4RA17180B.
8. Linsley, C.S., Wu B.M., Tawil B. Mesenchymal stem cell growth on and mechanical properties of fibrin‐based biomimetic bone scaffolds, Journal of Biomedical Materials Research Part A, 2016, vol. 104, issue 12, pp. 2945-2953. DOI: 10.1002/jbm.a.35840.
9. Alam S., Khare G., Kumar K.V.A. A comparative study of platelet-rich fibrin and platelet-rich fibrin with hydroxyapatite to promote healing of impacted mandibular third molar socket, Journal of Maxillofacial and Oral Surgery, 2020, 8 p. DOI: 10.1007/s12663-020-01417-9.
10. Le Nihouannen D., Le Guehennec L., Rouillon T. et al. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering, Biomaterials, 2006, vol. 27, issue 13, pp. 2716-2722. DOI: 10.1016/j.biomaterials.2005.11.038.
11. Krut’ko V.K., Vlasov R.A., Musskaya O.N. et al. Gibridnye biomaterialy na osnove gidroksiapatita i komponentov krovi [Hybrid biomaterials based on hydroxyapatite and blood components], Izvestiya Natsional'noj akademii nauk Belarusi. Seriya khimicheskikh nauk [Proceedings of National Academy of Sciences of Belarus. Chemical series], 2019, vol. 55, no. 3, pp. 299-308. DOI: 10.29235/1561-8331-2019-55-3-299-308. (In Russian).
12. Vlasov R.A., Mel’nik V.F., Merkulova E.P. et al. Ispol'zovanie kompozitsionnykh materialov na osnove fibrina i gidrogelya gidroksiapatita v rinoseptoplastike [Application of composite materials on the basis of fibrin and hydrogel of hydroxyapatite for rhinoseptoplasty], Otorinolaringologiya. Vostochnaya Evropa [Otorhinolaryngology. Eastern Europe], 2013, no. 3, pp. 29-32. (In Russian).
13. Glazov I.E., Vlasov R.A., Krut'ko V.K., Musskaya O.N. Sintez kompozicionnyh materialov na osnove fosfatov kal'ciya i komponentov krovi [Synthesis of composite materials based on calcium phosphates and blood components], Izvestiya Natsional'noj akademii nauk Belarusi. Seriya khimicheskikh nauk [Proceedings of National Academy of Sciences of Belarus. Chemical series], 2019, vol. 55, no. 2, pp. 135-141. DOI: 10.29235/1561-8331-2019-55-2-135-141. (In Russian).
14. Glazov I.E., Krut’ko V.K., Kulak A.I. et al. Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates, Materials Today Communications, 2021, vol. 27, issue 5, art. no. 102224, 13 p. DOI: 10.1016/j.mtcomm.2021.102224.
15. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2021).
16. Kokubo T., Tadakama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, vol. 27, issue 15, pp. 2907-2915. DOI: 10.1016/j.biomaterials.2006.01.017.
17. Bramanti E., Benedetti Ed., Sagripanti A. et al. Determination of secondary structure of normal fibrin from human peripheral blood, Biopolymers: Original Research on Biomolecules, 1997, vol. 41, issue 5, pp. 545-553. DOI: 10.1002/(SICI)1097-0282(19970415)41:5<545:AID-BIP6>3.0.CO;2-M.
18. Litvinov R.I., Faizullin D.A., Zuev Y.F., Weisel J.W. The α -helix to β -sheet transition in stretched and compressed hydrated fibrin clots, Biophysical Journal, 2012, vol. 103, issue 5, pp. 1020-1027. DOI: 10.1016/j.bpj.2012.07.046.
19. Cardoso G.B.C., Tondon A., Maia L.R.B. et al. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor, Materials Science and Engineering C, 2019, vol. 99, pp. 999-1006. DOI: 10.1016/j.msec.2019.02.060.
20. Glazov I.E., Krut’ko V.K., Musskaya O.N., Kulak A.I. Zhidkofaznyj sintez karbonat-gidroksiapatita [Wet synthesis of carbonated hydroxyapatite], Izvestiya Natsional'noj akademii nauk Belarusi. Seriya khimicheskikh nauk [Proceedings of National Academy of Sciences of Belarus. Chemical series], 2019, vol. 55, no. 4, pp. 391- 399. DOI: 10.29235/1561-8331-2019-55-4-391-399. (In Russian).
21. Combes C., Rey, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials, Acta Biomaterialia, 2010, vol. 6, issue 9, pp. 3362-3378. DOI: 10.1016/j.actbio.2010.02.017.
22. Danil'chenko S.N. Struktura i svojstva apatitov kal'tsiya s tochki zreniya biomineralogii i biomaterialovedeniya (obzor) [Structure and properties of calcium apatites from viewpoint of biominerology and biomaterial science (a review)], Vestnik Sumskogo gosudarstvennogo universiteta. Seriya Fizika, matematika, mekhanika [Proceedings of Sumy State University. Physics, mathematics, mechanics series], 2007, issue 2, pp. 33-59. (In Russian).
23. Galeano S., García‐Lorenzo M.L. Bone mineral change during experimental calcination: an X‐ray diffraction study, Journal of forensic sciences, 2014, vol. 59, issue 6, pp. 1602-1606. DOI: 10.1111/1556-4029.12525.

⇐ Prevoius journal article | Content | Next journal article ⇒