Interaction of iron-containing nanocluster polyoxometalate with doxorubicin
Yu.A. Gubarev1, N.Sh. Lebedeva1, M.O. Tonkushina2, I.D. Gagarin2, A.Yu.. Golub2, A.A. Ostroushko2
1 G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
2 Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin
DOI: 10.26456/pcascnn/2021.13.841
Original article
Abstract: Actual problem in the field of targeted drug delivery is transport of highly toxic drugs, with undesirable side effects, in particular antitumor medicine. The thermodynamic parameters of complexation between nanocluster polyoxometalate {Mo72Fe30}, promising as a means of targeted drug delivery, and a cytostatic agent – doxorubicin, widely used in clinical practice, were studied. The interaction of doxorubicin with {Mo72Fe30} was accompanied by an exothermic effect, which indicates an energetically favorable formation of the complex. The kinetics of the release of doxorubicin from the complex in a buffer solution with a pH corresponding to the pH value of blood was studied by fluorescence spectroscopy. The rate constants of destruction processes in the complex, accompanied by the release of doxorubicin, and further complexation of the released doxorubicin with decay products were determined. In the future, it is possible to slow down the release of doxorubicin by stabilizing the {Mo72Fe30}, for example, when it is associated with albumin.
Keywords: Nanocluster polyoxometalates, doxorubicin, complexation, targeted delivery, nanoparticles, rate constant, thermodynamic parameters
- Yuri A. Gubarev – Ph. D., Researcher, Laboratory of Physical Chemistry of Macrocyclic Solutions, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Natalia Sh. Lebedeva – Dr. Sc., Leading Researcher, Laboratory of Physical Chemistry of Macrocyclic Solutions, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Margarita O. Tonkushina – Ph. D., Researcher, Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematics, Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin
- Ilya D. Gagarin – Junior Researcher, Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematic, Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin
- Alexey Yu.. Golub – Assistant, Department of Analytical Chemistry and Environmental Chemistry, Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin
- Alexander A. Ostroushko – Dr. Sc., Professor, Physical and Inorganic Chemistry Department, Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin, Chief Researcher and Head of Department of Chemical Materials Science in Scientific Research Institute of Physics and Applied Mathematics, Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N. Yeltsin
Reference:
Gubarev, Yu.A. Interaction of iron-containing nanocluster polyoxometalate with doxorubicin / Yu.A. Gubarev, N.Sh. Lebedeva, M.O. Tonkushina, I.D. Gagarin, A.Yu.. Golub, A.A. Ostroushko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 841-851. DOI: 10.26456/pcascnn/2021.13.841. (In Russian).
Full article (in Russian): download PDF file
References:
1. Müller A., Sarkar S., Shah S.Q.N. et al. Archimedean synthesis and magic numbers: «sizing» giant molybdenum-oxide-based molecular spheres of the keplerate type, Angewandte Chemie International Edition, 1999, vol. 38, issue 21, pp. 3238-3241. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3238::AID-ANIE3238>3.0.CO;2-6.
2. Cui J., Fan D., Hao J. Magnetic {Mo72Fe30} -embedded hybrid nanocapsules, Journal of Colloid and Interface Science, 2009, vol. 330, issue 2, pp. 488-492. DOI: 10.1016/j.jcis.2008.10.075.
3. Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K.V. et al. The physicochemical properties and influence on living organisms of nanocluster polyoxomolybdates as prospective bioinspired substances (based on materials from the plenary lecture), Journal of Molecular Liquids, 2020, vol. 301, art. no 110910, 23 p. DOI: 10.1016/j.molliq.2019.110910.
4. Fan D., Hao J. Magnetic aligned vesicles, Journal of Colloid and Interface Science, 2010, vol. 342, issue 1, pp. 43-48. DOI: 10.1016/j.jcis.2009.10.013.
5. Zhao W., Sun H., Wang Y. et al. . Self-assembled magnetic viruslike particles for encapsulation and delivery of deoxyribonucleic acid, Langmuir, 2018, vol. 34, issue 24, pp. 7171-7179. DOI: 10.1021/acs.langmuir.8b01445.
6. Liu T., Imber B, Diemann E. et al. Deprotonations and charges of well-defined {Mo72Fe30} nanoacids simply stepwise tuned by ph allow control/variation of related self-assembly processes, Journal of the American Chemical Society, 2006, vol. 128, issue 49, pp. 15914-15920. DOI: 10.1021/ja066133n.
7. Li D., Pigga J.M., Liu G. et al. Tuning the surface hydrophobicity of Keplerate {Mo72Fe30} porous molecular capsules by surface ligand-replacement process, Journal of Cluster Science, 2017, vol. 28, issue 2, pp. 745-755. DOI: 10.1007/s10876-016-1105-9.
8. Ostroushko A., Gagarin I., Tonkushina M., Grzhegorzhevskii K., Russkikh O. Association of spherical porous nanocluster keplerate-type polyoxometalate {Mo72Fe30} with biologically active substances, Journal of Cluster Science, 2018, vol. 29, issue 1, pp. 111-120. DOI: 10.1007/s10876-017-1304-z.
9. Ostroushko A.A., Gette I.F., Danilova I.G. et al. studies on the possibility of introducing iron-molybdenum buckyballs into an organism by electrophoresis, Nanotechnologies in Russia, 2014, vol. 9, issue 9-10, pp. 577-582. DOI: 10.1134/S1995078014050115.
10. Gagarin I.D., Kulesh N.A., Tonkushina M.O., Vlasov D.A., Ostroushko A.A. Fiziko-khimicheskie aspekty elektroperenosa nanoklasternykh polioksoanionov kepleratnogo tipa v nativnykh membranakh [Physico-chemical aspects of electrotransport of keplerate-type nanocluster polyoxoanions in native membranes], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 147-152. DOI: 10.26456/pcascnn/2017.9.147. (In Russian).
11. Gette I.F., Tonkushina M.O., Grzhegorzhevskii K.V., Gagarin I.D., Danilova I.G., Ostroushko A.A. Sposob korrektsii postgemorragicheskoj anemii [Method of correction posthemorrhapic anemia]. Patent RF, no 2671077, 2018. (In Russian).
12. Barenholz Y.(C.) Doxil® – the first FDA-approved nano-drug: lessons learned, Journal of Controlled Release. 2012, vol. 160, issue 2, pp. 117-134. DOI: 10.1016/j.jconrel.2012.03.020.
13. Yang R., An Y., Miao F. et al. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo, International Journal of Nanomedicine, 2014, vol. 9, issue 1, pp. 4231-4243. DOI: 10.2147/IJN.S67210.
14. Cao X., Tao L., Wen S., Hou W., Shi X.Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells, Carbohydrate Research, 2015, vol. 405, pp. 70-77. DOI: 10.1016/j.carres.2014.06.030.
15. Mdlovu N.B., Lin K.-S., Weng M.-T. et al. Formulation and in-vitro evaluations of doxorubicin loaded polymerized magnetic nanocarriers for liver cancer cells, Journal of the Taiwan Institute of Chemical Engineers, 2021, vol. 126, pp. 278-287. DOI: 10.1016/j.jtice.2021.06.059.
16. Viale M., Giglio V., Monticone M. et al. New doxorubicin nanocarriers based on cyclodextrins, Investigational New Drugs, 2017, vol. 35, issue 5, pp. 539-544. DOI: 10.1007/s10637-017-0461-0.
17. Fojtu M., Gumulec J., Stracina T. et al. Reduction of doxorubicin-induced cardiotoxicity using nanocarriers: a review, Current Drug Metabolism, 2017, vol. 18, issue 3, pp. 237-263. DOI: 10.2174/1389200218666170105165444.
18. Vasconcelos I.B., da Silva T.G., Militão G.C.G. et al. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8, RSC Advances, 2012, vol. 2, issue 25, pp. 9437. DOI: 10.1039/c2ra21087h.
19. Ostroushko A.A., Grzhegorzhevskii K.V., Medvedeva S.Yu. et al. Physicochemical and biochemical properties of the Keplerate-Type nanocluster polyoxomolybdates as promising components for biomedical use, Nanosystems: Physics, Chemistry, Mathematics, 2021, vol. 12, Issue 1, pp. 81-112. DOI: 10.17586/2220-8054-2021-12-1-81-112.
20. Haghiralsadat F., Amoabediny G., Helder M.N. et al. A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery, Artificial Cells, Nanomedicine, and Biotechnology, 2018, vol. 46, issue 1, pp. 169-177. DOI: 10.1080/21691401.2017.1304403.
21. Natarajan J.V., Nugraha C., Ng X.W. et al. Sustained-release from nanocarriers: a review, Journal of Controlled Release, 2014, vol. 193, pp. 122-138. DOI: 10.1016/j.jconrel.2014.05.029.
22. Lebedeva N.Sh., Mikhailovskii K.V., V'yugin A.I. A differential automatic titration calorimeter, Russian Journal of Physical Chemistry A, 2001, vol. 75, no. 6, pp. 1031-1033.
23. Ostroushko A.A., Safronov A.P., Tonkushina M.O. Thermochemical study of interaction between nanocluster polyoxomolybdates and polymers in film compositions, Russian Journal of Physical Chemistry A, 2014, vol. 88, issue 2, pp. 295-300. DOI: 10.1134/S0036024414020186.
24. Ostroushko A.A., Safronov A.P., Tonkushina M.O., Korotaev V.Yu., Barkov A.Yu. Interaction between Mo132 nanocluster polyoxometalate and solvents, Russian Journal of Physical Chemistry A, 2014, vol. 88, issue 12, pp. 2179-2182. DOI: 10.1134/S0036024414120231.
25. Chen A., Wadsö I. Simultaneous determination of ΔG, ΔH and ΔS by an automatic microcalorimetric titration technique. Application to protein ligand binding, Journal of Biochemical and Biophysical Methods, 1982, vol. 6, issue 4, pp. 307-316. DOI: 10.1016/0165-022X(82)90012-4.
26. Fiallo M.M.L., Drechsel H., Garnier-Suillerot A., Matzanke B.F., Kozlowski H. Solution structure of iron(III)−anthracycline complexes, Journal of Medicinal Chemistry, 1999, vol. 42, issue 15, pp. 2844-2851. DOI: 10.1021/jm981057n.
27. Kiraly R., Martin R.B. Metal ion binding to daunorubicin and quinizarin, Inorganica Chimica Acta, 1982, vol. 67, pp. 13-18. DOI: 10.1016/S0020-1693(00)85033-1.
28. Gosálvez M., Blanco M.F., Vivero C. et al. Quelamycin, a new derivative of adriamycin with several possible therapeutic advantages, European Journal of Cancer(1965), 1978, vol. 14, issue 11, pp. 1185-1190. DOI: 10.1016/0014-2964(78)90224-4.
29. Anand R., Borghi F., Manoli F. et al. Host–guest interactions in Fe (III)-Trimesate MOF Nanoparticles Loaded with Doxorubicin, The Journal of Physical Chemistry B, 2014, vol. 118, issue 29, pp. 8532-8539. DOI: 10.1021/jp503809w.
30. Ostroushko A.A., Tonkushina M.O. Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions, Russian Journal of Physical Chemistry A, 2015, vol. 89, issue 3, pp. 443-446. DOI: 10.1134/S003602441503022X.
31. Tonkushina M.O., Gagarin I.D., Russkikh O.V., Belozerova K.A., Ostroushko A.A. Destruktsiya polioksometallata {Mo72Fe30} kak transportnogo agenta v sredakh, modeliruyushchikh krov', ego stabilizatsiya al'buminom [Destruction of polyoxometalate {Mo72Fe30} as a transport agent in blood simulating media, its stabilization by albumin], Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2020, issue 12, pp. 885-892. DOI: 10.26456/pcascnn/2020.12.885. (In Russian).
32. Jabłońska-Trypuć A., Świderski G., Krętowski R., Lewandowski W. Newly synthesized doxorubicin complexes with selected metals – synthesis, structure and anti-breast cancer activity, Molecules, 2017, vol. 22, issue 7, art. no. 1106, 21 p. DOI: 10.3390/molecules22071106.