Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Specific structure of effective membrane alloys based on niobium, vanadium and zirconium

E.D. Kurbanova, R.M. Belyakova, V.A. Polukhin

Institute of Metallurgy, Ural Branch of the Russian Academy of Science

DOI: 10.26456/pcascnn/2021.13.728

Original article

Abstract: With unique mechanical and functional properties, amorphous, nanocrystalline and matrix duplex microstructure membrane alloys based on group V elements actively contribute to the development of hydrogen energy. There are still not completely resolved problems for these new alloys – their low thermal stability, insufficient mechanical strength (plasticity, hardness), and intermetallic and hydride embrittlement. For effective use, alloys with a triple composition are being developed – which, in addition to the elements of group V, also include nickel and titanium as alloying metals. Not only amorphous and nanocrystalline alloys are obtained that are applicable in electronics and power engineering, as well as membrane alloys with a duplex matrix structure that combines amorphous, nano- and quasicrystalline dendritic-hardening phases strengthening the amorphous matrix. In specialized membrane ternary alloys, NiTi and NiTi2 compounds are formed, which stabilize and protect nano- and crystalline membranes from brittle destruction. It has been found that the intense formation of hydrides in these alternative membrane alloys is as undesirable as for palladium-based compounds. The alloys under consideration actually make it possible to obtain high-purity gaseous hydrogen using new compositions instead of expensive membranes based on Pd–Au/Ag/Cu alloys.

Keywords: amorphous and nanocrystalline alloys, nickel, titanium, zirconium, niobium, structurization, membrane gas separation, hydrogen purification, solubility, hydrogen permeability, accumulation, thermal stability, fragility, crystallization, modeling, diffusion, nanophases, Me–H hydrides, embrittlement, duplex matrix microstructure

  • Elmira D. Kurbanova – Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
  • Rimma M. Belyakova – Ph. D., Senior Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science
  • Valeriy A. Polukhin – Dr. Sc., Chief Researcher, Institute of Metallurgy, Ural Branch of the Russian Academy of Science


Kurbanova, E.D. Specific structure of effective membrane alloys based on niobium, vanadium and zirconium / E.D. Kurbanova, R.M. Belyakova, V.A. Polukhin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 728-739. DOI: 10.26456/pcascnn/2021.13.728. (In Russian).

Full article (in Russian): download PDF file


1. Рalumbo O., Trequattrini F., Pal N. et al. Hydrogen absorption properties of amorphous (Ni0,6Nb0,4-yTay)100-xZrx membranes, Progress in Natural Science: Materials International, 2017, vol. 27, issue 1, pp. 126-131. DOI: 10.1016/j.pnsc.2017.01.002.
2. Jiang P., Sun B., Wang H. et al. Effect of partial Ni substitution in V85Ni15 by Ti on microstructure, mechanical properties and hydrogen permeability of V – based bcc alloy membranes, Materials Research Express, 2020, vol. 7, art. no. 066505, 11 p. DOI: 10.1088/2053-1591/ab98ca.
3. Yan E., Li X., Rettenmayr M. et al. Design of hydrogen permeable Nb Ni–Ti alloys by correlating the microstructures, solidification paths and hydrogen permeability, International Journal of Hydrogen Energy, 2014, vol. 39, issue 7, pp. 3505-3516. DOI: 10.1016/j.ijhydene.2013.12.060.
4. Dai Y., Li J.H., Che X.L., Liu B.X. Glass-forming region of the Ni–Nb–Ta ternary metal system determined directly from n– body potential through molecular dynamics simulations, Journal of Materials Research, 2009, vol. 24, issue 5, pp. 1815-1819. DOI: 10.1557/jmr.2009.0198.
5. Luo W., Ishikawa K., Aoki K. Hydrogen permeable Ta–Ti–Ni duplex phase alloys with high resistance to hydrogen embrittlement, Journal of Alloys and Compounds, 2008, vol. 460, issue 1-2, pp. 353-356. DOI: 10.1016/j.jallcom.2007.06.061.
6. Polukhin V.A., Belyakova R.M., Rigmant L.K. Spatial arrangement of the fragmented phases in nanostructured 3d metal alloys during a change in the melt composition and cooling conditions, Russian Metallurgy (Metally), 2010. vol. 2010, issue 8, pp. 681-698. DOI: 10.1134/S0036029510080045.
7. Polukhin V.A., Dzugutov M.M., Evseev A.M. et al. Short-range order and character of atom motion in liquid- metals, Doklady Akademii Nauk SSSR, 1975, vol. 223, no. 3, pp. 650-652.
8. McCluskey P.J., Vlassak J.J. Glass transition and crystallization of amorphous Ni–Ti–Zr thinfilms by combinatorial nano-calorimetry, Scripta Materialia, 2011, vol. 64, issue 3, pp. 264-267. DOI: 10.1016/j.scriptamat.2010.10.008.
9. McCluskey P.J., Zhao C., Kfir O., Vlassak J.J. Precipitation and thermal fatigue in Ni–Ti–Zr shape memory alloy thin films by combinatorial nanocalorimetry, Acta Materialia, 2011, vol. 59, issue 13, pp. 5116-5124. DOI: 10.1016/j.actamat.2011.04.043.
10. McCluskey P.J., Vlassak J.J. Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films, Thin Solid Films, 2010, vol. 518, issue 23, pp. 7093-7106. DOI: 10.1016/j.tsf.2010.05.124.
11. Li X., Liu D., Chen R. et al. Changes in microstructure, ductility and hydrogen permeability of Nb–(Ti,Hf)Ni alloy membranes by the substitution of Ti by Hf, Journal of Membrane Science, 2015, vol. 484, pp. 47-56. DOI: 10.1016/j.memsci.2015.03.002.
12. Saeki Y., Yamada Y., Ishikawa K. Relationship between hydrogen permeation and microstructure in Nb–TiNi two-phase alloys, International Journal of Hydrogen Energy, 2014, vol. 39, issue 23, pp. 12024-12030. DOI: 10.1016/j.ijhydene.2014.05.192.
13. Polukhin V.A., Sidorov N.I., Belyakova R.M. Vodorodopronitsaemost' amorfnykh, nano- i kristallicheskikh splavov na osnove zheleza i nikelya [Hydrogen permeability of amorphous, nano- and crystalline alloys based on iron and nickel], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. P. 457-473. DOI: 10.26456/pcascnn/2020.12.457. (In Russian).
14. Liu D.M., Li X.Z., Geng al. Development of Nb35Mo5Ti30Ni30 alloy membrane for hydrogen separation applications, Journal of Membrane Science, 2018, vol. 553, pp. 171-179. DOI: 10.1016/j.memsci.2018.02.052.
15. Vatolin N.A., Polukhin V.A., Belyakova R.M., Pastukhov E.A. Simulation of the influence of hydrogen on the structural properties of amorphous iron, Materials Science and Engineering, 1988, vol. 99, issue 1-2, pp. 551-554. DOI: 10.1016/0025-5416(88)90396-5.
16. Song G., Dolan M.D., Kellam M.E. et al. V–Ni–Ti multi-phase alloy membranes for hydrogen purification, Journal of Alloys and Compounds, 2011, vol. 509, issue 38, pp. 9322-9328. DOI: 10. 1016/j.jallcom.2011.07.020.
17. Dolan M.D., Kellam M.E., McLennan K.G., Liang D., Song G. Hydrogen transport properties of several vanadium-based binary alloys, International Journal of Hydrogen Energy, 2013, vol. 38, issue 23, pp. 9794-9799. DOI: 10.1016/j.ijhydene.2013.05.073.
18. Tosti S. Overview of Pd -based membranes for producing pure hydrogen and state of art at ENEA laboratories, International Journal of Hydrogen Energy, 2010, vol. 35, issue 22, pp. 12650-12659. DOI: 10.1016/j.ijhydene.2010.07.116.
19. Hara S., Ishitsuka M., Suda H., Mukaida M., Haraya K. Application of extended permeability to a thick palladium membrane, Advanced Materials Research, 2010, vol. 117, pp. 81-85. DOI: 10.4028/
20. Pastukhov E.A., Sidorov N.I., Polukhin V.A., Chentsov V.P. Short order and transport in amorphous palladium materials, Defect and Diffusion Forum, 2009, vol. 283-286, pp. 149-154. DOI: 10.4028/
21. Suryanarayana C., Inoue A. Bulk metallic glasses, 2nd ed. Boca Raton, London, New York, CRC Press, 2017. 542 p. DOI: 10.1201/9781315153483.
22. Ding H.Y., Zhang W., Yamaura S.I., Yao K.F. Hydrogen permeable Nb–based amorphous alloys with high thermal stability materials transactions, Materials Transactions, 2013, vol. 54, issue 8, pp. 1330-1334. DOI: 10.2320/matertrans.MF201310.
23. Polukhin V.A., Sidorov N.I., Vatolin N.A. Presolidification changes in the structural–dynamic characteristics of glass-forming metallic melts during deep cooling, vitrification, and hydrogenation, Russian Metallurgy (Metally), 2019, vol. 2019, issue 8, p. 758-780. DOI: 10.1134/S0036029519080123.
24. Ozaki T., Zhang Y., Komaki M., Nishimura C. Hydrogen permeation characteristics of V–Ni–Al alloys, International Journal of Hydrogen Energy, 2003, vol. 28, issue 11, pp. 1229-1235. DOI: 10.1016/S0360-3199(02)00251-3.
25. Suzuki A., Yukawa H.A. A Review for consistent analysis of hydrogen permeability through dense metallic membranes, Membranes, 2020, vol. 10, issue 6, art. no. 120, 20 p. DOI: 10.3390/membranes10060120.
26. Polukhin V.A., Vatolin N.A. Modelirovanie razuporyadochennykh i nanostrukturirovannykh faz [Simulation of disordered and nanostructured phases]. – Ekaterinburg, Ural Branch of RAS Publ., 2011. 462 p. (In Russian).
27. Kozhakhmetov S., Sidorov N., Piven V. et al. Alloys based on group 5 metals for hydrogen purification membranes, Journal of Alloys and Compounds, 2015, vol. 645, supplement 1, pp. S36-S40. DOI: 10.1016/j.jallcom.2015.01.242.
28. Veleckis E., Edwards R.K. Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen, The Journal of Physical Chemistry, 1969, vol. 73, no. 3, pp. 683-692. DOI: 10.1021/j100723a033.
29. Sipatov I.S., Sidorov N.I., Pastukhov E.A. et al. Hydrogen permeability and structure of vanadium alloy membranes, Petroleum Chemistry, 2017, vol. 57, issue 6, pp. 483-488. DOI: 10.1134/S096554411706010X.
30. Belyakova R.M, Polukhin V.A., Rigmant L.K. Effect of hydrogen on the interatomic interactions of elements in metal alloys and the physicochemical properties of the related articles, Russian Metallurgy (Metally), 2020, vol. 2020, issue 8, pp. 859-869. DOI: 10.1134/S0036029520080030.
31. Polukhin V.A., Kurbanova E.D., Vatolin N.A. Formation of a intermediate order in metallic glasses and a long order in nanocrystalline alloys with allowance for the character of binding and the transformation of the short order in a melt, Russian Metallurgy (Metally), 2018, vol. 2018, issue 2, pp. 95-109. DOI: 10.1134/S0036029518020167.

⇐ Prevoius journal article | Content | Next journal article ⇒