Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Optimization of technology for producing a composite based on barium ferrite and barium titanate

O.V. Malyshkina, G.S. Shishkov, A.I. Ivanova

Tver State University

DOI: 10.26456/pcascnn/2021.13.740

Original article

Abstract: It is shown in the work that as a result of sintering of composite samples of barium titanate (80 vol. %) – barium ferrite ( 20 vol. %) in a porcelain crucible at a temperature of 1300 °C, a eutectic appears. As a result of comparing the properties of the samples obtained at different sintering temperatures, it was found that the samples sintered at 1250 °C have optimal properties. The structure and dielectric properties of barium titanate ceramic samples and barium titanate (80 vol. %) – barium ferrite ( 20 vol. %) composite sintered at a temperature of 1250 °C are compared. It has been shown that the addition of 20% barium ferrite to the composition of barium titanate increases the dielectric constant, pyroelectric coefficient, and piezoelectric modulus d33 of the composite of 1,5–2 times compared to barium titanate ceramics, while the value of the piezoelectric modulus d31 remains unchanged. The introduction of 20 % barium ferrite into the barium titanate ceramics is sufficient for the resulting composite to have magnetic characteristics corresponding to pure barium ferrite.

Keywords: multiferroic, barium ferrite, barium titanate, magneto-electric composite, piezoelectric ceramic structure

  • Olga V. Malyshkina – Dr. Sc., Full Professor, Head of the Department of Dissertation Councils and Doctorate Studies, Scientific Research Department, Tver State University
  • Gregori S. Shishkov – 3rd year postgraduate student, Tver State University
  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physic Department, Tver State University

Reference:

Malyshkina, O.V. Optimization of technology for producing a composite based on barium ferrite and barium titanate / O.V. Malyshkina, G.S. Shishkov, A.I. Ivanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 740-749. DOI: 10.26456/pcascnn/2021.13.740. (In Russian).

Full article (in Russian): download PDF file

References:

1. Smolenskii G.A., Chupis I.E. Ferroelectromagnets, Physics-Uspekhi, 1982, vol. 25, issue 7, pp. 475-493. DOI: 10.1070/PU1982v025n07ABEH004570.
2. Zvezdin A.K., Pyatakov A.P. Inhomogeneous magnetoelectric interaction in multiferroics and related new physical effects, Physics-Uspekhi, 2009, vol. 179, issue 8, pp. 845-851. DOI: 10.3367/UFNe.0179.200908i.0897.
3. Kleemann W. Multiferroic and magnetoelectric nanocomposites for data processing, Journal of Physics D: Applied Physics, 2017, vol. 50, no. 22, art. no. 223001, 13 p. DOI: 10.1088/1361-6463/aa6c04.
4. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media, Physics-Uspekhi, 2012, vol. 182, issue 6, pp. 557-581. DOI: 10.3367/UFNe.0182.201206b.0593.
5. Ortega N., Kumar A., Scott J.F., Katiyar R.S. Multifunctional magnetoelectric materials for device applications, Journal of Physics: Condensed Matter, 2015, vol. 27, no. 50, art. no. 504002. 23 p. DOI: 10.1088/0953-8984/27/50/504002.
6. Vopson M. Fundamentals of multiferroic materials and their possible applications, Critical Reviews in Solid State and Materials Sciences, 2015, vol. 40, issue 4, pp. 223-250. DOI:10.1080/10408436.2014.992584.
7. Sloccari G. Phase equilibrium in the subsystem BaO·Fe2O3–BaO·Fe2O3, Journal of the American Ceramic Society, 1973, vol. 56, issue 9, pp. 489-490. DOI: 10.1111/j.1151-2916.1973.tb12531.x.
8. Karpenkov D.Y., Bogomolov A.A., Solnyshkin A.V. et al. Multilayered ceramic heterostructures of lead zirconate titanate and nickel-zinc ferrite for magnetoelectric sensor elements, Sensors and Actuators A: Physical, 2017, vol. 266, pp. 242-246. DOI: 10.1016/j.sna.2017.09.011.
9. Grechishkin R.M., Kaplunov I.A., Ilyashenko S.E. et al. Magnetoelectric effect in metglas/piezoelectric macrofiber composites, Ferroelectrics, 2011, vol. 424, issue 1, pp. 78-85. DOI: 10.1080/00150193.2011.623939.
10. Makarova L.A., Alekhina Yu.A., Perov N.S. et al. Elastically coupled ferromagnetic and ferroelectric microparticles: new multiferroic materials based on polymer, NbFeB and PZT particles, Journal of Magnetism and Magnetic Materials, 2017, vol. 470, pp. 89-92. DOI: 10.1016/j.jmmm.2017.11.121.
11. Okazaki K. Ceramic engineering for dielectrics. Tokyo: Gakken-sha, Publishing Co., Ltd., 1969, 532 p. (In Japanese) [Okadzaki K. Tekhnologiya keramicheskikh diehlektrikov [Ceramic dielectric technology], transl. by M.M. Bogachikhina, L.R. Zajontsa. Moscow, Ehnergiya Publ., 1976, 336 p. (In Russian)].
12. Malyshkina O.V., Shishkov G.S., Ivanova A.I., Malyshkin Y.A., Alexina Y.A. Multiferroic ceramics based on barium titanate and barium ferrite., Ferroelectrics, 2020, vol. 569, issue 1, pp. 215-221. DOI: 10.1080/00150193.2020.1822679.
13. Magnetic oxides and composites, Materials Research Foundations, vol. 31, ed. by R.B. Jotania, S.H. Mahmood. Millersville, PA 17551, USA, Materials Research Forum LLC, 2018, 274 p.
14. Golovnin V.А., Kaplunov I.А., Ped'ko B.B., Malyshkina O.V., Movchikova А.А. Fizicheskie osnovy, metody issledovaniya i prakticheskoe primenenie p'ezomaterialov [Physical foundations, research methods and practical application of piezomaterials]. – Moscow, TEKHNOSFERА Publ., 2013. – 272 p. (In Russian).
15. Chernyakova K. V., Pankov V.V., Ivanovskaya M.I., Lomonosov V.A. Struktura i magnitnyye svoystva geksagonalnogo ferrita bariya [Structure and magnetic properties of hexagonal barium ferrite], Vestnik BGU [Bulletin of BSU], 2008, ser. 2, no. 1, pp. 9-13. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒