Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Micromorphology of the surface of rapidly quenched Heusler-alloys

A.I. Ivanova1, A.D. Zigert1, S.A. Tretyakov1, E.M. Semenova1, E.T. Dilmieva2, A.Yu. Karpenkov1, E.V. Barabanova1, N.Yu. Sdobnyakov1

1 Tver State University
2 Kotel’nikov Institute of Radio Engineering and Electronics Russian Academy of Sciences

DOI: 10.26456/pcascnn/2021.13.166

Original article

Abstract: The paper describes the results of the scanning electronic and atomic force microscopy research of the surface structure of the  Ni57Mn21Al22,  Ni57Mn21Al19Si3,  Ni40Co10Mn34Al16  rapidly quenched ribbons. The influence of the chemical composition on the size, boundary geometry and structure of the grains is considered. It is shown that all the test samples have a nano-sized martensitic relief, and its parameters are determined. It has been established that the cross section of the ribbon is represented by crystalline grains of different shapes which are due to differences in the cooling rates along the edges and in the center of the samples. Elemental mapping of the cross-sectional surface of the ribbons was carried out using an X-ray energy dispersive spectrometer, and a uniform distribution of chemical elements in the samples was established. It is shown that the cobalt doping of  Ni57Mn21Al22  ribbon causes changes in the micromorphology of the surface and has a significant effect on the magnetic properties of rapidly quenched ribbons: field dependences of themagnetization and domain structure.

Keywords: Heusler alloys, structural transformation, rapidly quenched ribbons, surface microstructure, martensitic relief

  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
  • Alexandr D. Zigert – Senior Lecturer, Applied Physics Department, Tver State University
  • Sergey A. Tretyakov – Ph. D., Docent, Applied Physics Department, Tver State University
  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Elvina T. Dilmieva – Ph. D., Senior Researcher, Magnetic Materials Laboratory, Kotel’nikov Institute of Radio Engineering and Electronics Russian Academy of Sciences
  • Aleksey Yu. Karpenkov – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Ekaterina V. Barabanova – Ph. D., Docent, Applied Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Ivanova, A.I. Micromorphology of the surface of rapidly quenched Heusler-alloys / A.I. Ivanova, A.D. Zigert, S.A. Tretyakov, E.M. Semenova, E.T. Dilmieva, A.Yu. Karpenkov, E.V. Barabanova, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 166-176. DOI: 10.26456/pcascnn/2021.13.166. (In Russian).

Full article (in Russian): download PDF file

References:

1. Buchel'nikov V.D. Vasiliev A.N., Koledov V.V. et al. Magnetic shape-memory alloys: phase transitions and functional properties, Physics-Uspekhi, 2006, vol. 49, issue 8, pp. 871-877. DOI: 10.1070/PU2006v049n08ABEH006081.
2. Grechishkin R.M., Ivanova A.I., Barabanova E.V. Magnitnye svoistva i domennaya structura splavov Geislera [Magnetic properties and domain structure of Heusler alloys]. Tver, Tverskoy Gosudarstvennyi Universitet Publ., 2016, 75 p. (In Russian).
3. Entel P., Buchelnikov V.D., Gruner M.E. Shape memory alloys: a summary of recent achievements, Materials Science Forum, 2008, vol. 583, pp. 21-41. DOI: 10.4028/www.scientific.net/MSF.583.21.
4. De Groot R.A., Mueller F.M., Van Engen P.G., Buschow K.N.J. New class of materials: half-metallic ferromagnets, Physical Review Letters, 1983, vol. 50, issue 25, pp. 2024-2027. DOI: 10.1103/PhysRevLett.50.2024.
5. Vasil’ev A.N., Buchel’nikov V.D., Takagi T., Khovailo V.V., Estrin E.I. Shape memory ferromagnets, Physics-Uspekhi, 2003, vol. 46, issue 6, pp. 559-588. 10.1070/PU2003v046n06ABEH001339.
6. Czaja Р., Maziarz W., Przewoznik J. et al. Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic NiMnSn Heusler alloy ribbons, Intermetallics, 2014, vol.55, pp. 1-8. DOI: 10.1016/J.INTERMET.2014.07.001.
7. Dilmieva E.T., Irzhak A.V., Kamantsev A.P. et al. Rapidly quenched ferromagnetic ribbons with shape memory for magnetically controlled micromechanic devices, Journal of Communications Technology and Electronics, 2017, vol. 62, issue 7, pp. 809-819. DOI: 10.1134/S106422691707004X.
8. Lyange M.V., Sokolovskiy V.V., Taskaev S.V. et al. Effect of disorder on magnetic properties and martensitic transformation of Co -doped Ni—Mn—Al Heusler alloy, Intermetallics, 2018, vol. 102, pp. 132-139. DOI: 10.1016/j.intermet.2018.09.008.
9. Weise, B. Dutta B., Teichert N., Hütten A., Hickel T., Waske A. Role of disorder when upscaling magnetocaloric Ni—Co—Mn—Al Heusler alloys from thin films to ribbons, Scientific Reports, 2018, vol. 8, art. no. 9147, 10 p. DOI: 10.1038/s41598-018-27428-8.
10. Schwabe S., Schleicher B., Niemann R. et al Probing the martensitic microstructure of magnetocaloric Heusler films by synchrotron diffraction, Energy Technology, 2018, vol. 6, issue 8, pp. 1453-1462. DOI: 10.1002/ente.201800175.
11. Kalimullina E., Kamantsev A., Koledov V. et al. Magnetic shape memory microactuators, Physica Status Solidi C, 2014, vol. 11, .issue 5-6, pp. 1023-1025. DOI: 10.1002/pssc.201300718.
12. Ivanova A.I., Semenova E.M., Zhdanova O.V., Rostova T.V., Grechishkin R.M. Colloid-SEM method for the investigation of magnetic domain structures, Micron, 2020, vol. 137, art. no. 102899, 6 p. DOI: 10.1016/j.micron.2020.102899

⇐ Prevoius journal article | Content | Next journal article ⇒