Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Temperature dependence of optical transmission of germanium single crystals

A.I. Ivanova, K.A. Marinicheva, S.A. Tret'yakov, A.M. Ivanov, S.V. Molchanov, I.A. Kaplunov

Tver State University

DOI: 10.26456/pcascnn/2021.13.177

Original article

Abstract: In this work, we investigated optical transmission in the wavelength range of 2—14 µm of low-resistance germanium crystals (1—3 Ω·cm) doped with donor and acceptor impurities in the temperature range from 86K to 523 K. The values of the attenuation coefficients for investigated crystals are obtained. Minimum attenuation coefficients α of 0,0015—0,0231 cm-1 in the temperature range from 86K to 323K are characteristic for germanium single crystals doped with antimony in the range 2,1—11 μm. Studies have shown that the low values of α and the transmittance τ at a wavelength of 3,39 μm for Ge:Bi and Ge:Sb crystals make it possible to use these low-resistance germanium crystals for gas helium-neon lasers at temperatures from 86K to 323K. The temperature changes in the geometry of the crystal surface are investigated at the nanoscale level. It is shown that heating crystalline germanium leads to an increase in the diffuse reflection of radiation from the surface. The possibility of using the low-resistance germanium crystals doped with antimony as elements of infrared optics in the temperature range 86—373 K has been demonstrated.

Keywords: germanium single crystals, temperature stability, optical transmission, attenuation coefficient, surface nanorelief, diffuse reflection

  • Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
  • Kristina A. Marinicheva – Lead Engineer, Applied Physics Department, Tver State University
  • Sergey A. Tret'yakov – Ph. D., Docent, Applied Physics Department, Tver State University
  • Aleksey M. Ivanov – Lead Programmer, Applied Physics Department, Tver State University
  • Sergey V. Molchanov – 3rd year postgraduate student, Applied Physics Department, Tver State University
  • Ivan A. Kaplunov – Dr. Sc., Professor, Head of the Applied Physics Department, Tver State University

Reference:

Ivanova, A.I. Temperature dependence of optical transmission of germanium single crystals / A.I. Ivanova, K.A. Marinicheva, S.A. Tret'yakov, A.M. Ivanov, S.V. Molchanov, I.A. Kaplunov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 177-186. DOI: 10.26456/pcascnn/2021.13.177. (In Russian).

Full article (in Russian): download PDF file

References:

1. Bosi M., Attolini G. Germanium: Epitaxy and its application, Progress in Crystal Growth and Characterization of Materials, 2010, vol. 56, issue 3-4, pp. 146-174. DOI: 10.1016/j.pcrysgrow.2010.09.002.
2 Depuydt B., Theuwis A., Romandic I. Germanium: from the first application of Czochralski crystal growth to large diameter dislocation-free wafers, Materials Science in Semiconductor Processing, 2006, vol. 9, issue 4-5, pp. 437-443. DOI: 10.1016/j.mssp.2006.08.002.
3. Claeys L., Simoen E. Germanium-based technologies:from materials to devices. Oxford, Elsevier Science, 2007, 449 p. DOI: 10.1016/B978-0-08-044953-1.X5000-5.
4. Sullivan R.M. A historical view of germanium as an infrared window material, Window and Dome Technologies and Materials XI: proceedings of SPIE, vol. 7302, 15-16 April 2009, Orlando, Florida, United States. Washington, SPIE Publ., 2009, pp. 73020L-1-73020L-11. DOI: 10.1117/12.819812.
5. Kaplunov I.A., Rogalin V.E. Opticheskie svojstva i oblasti primeneniya germaniya v fotonike [Optical properties and applications of germanium in photonics], Fotonika [ Photonics], 2019, vol. 13, no. 1, pp. 88-106. DOI: 10.22184/FRos.2019.13.1.88.106. (In Russian).
6. Potter R.F. Germanium ( Ge ), Handbook of Optical Constants of Solids, 1997, vol. 1, pp. 465-478. DOI: 10.1016/B978-012544415-6.50020-0.
7. Kaplunov I A., Smirnov Yu.M., Kolesnikov A.I. Optical transparency of crystalline germanium, Journal of Optical Technology, 2005, vol. 72, issue 2, pp. 214-220. DOI: 10.1364/JOT.72.000214.
8. Makolkina E.N. Vliyanie vysokotemperaturnoj termoobrabotki na spektr pogloshcheniya kristallov germaniya [Influence of high-temperature heat treatment on the absorption spectrum of germanium crystals], Nauchno-tekhnicheskij vestnik informatsionnykh tekhnologij, mekhaniki i optiki [Scientific and technical bulletin of information technologies, mechanics and optics], 2005, no. 18, pp. 198-202. (In Russian).
9. Podkopaev O.I., Shimanskiy A.F., Kopytkova S.A., Filatov R.A., Golubovskaya N.O. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals, Semiconductors, 2016, vol. 50, issue 10, pp. 1287-1290. DOI: 10.1134/S1063782616100213.
10. Shimanskii A.F., Gorodishcheva A.N., Kopytkova S.A., Kulakovskaya T.V. Thermal stability of the properties of germanium crystals for IR optics, Journal of Physics: Conference Series, 2019, vol.1353, art. no. 12062, 7 p. DOI: 10.1088/1742-6596/1353/1/012062.
11. Astaf'ev N.I. Nesmelova I.M., Nesmelov E.A. Features of semiconductor materials as infrared optical media, Journal of Optical Technology, 2008, vol.75, issue 9, pp. 608-610. DOI: 10.1364/jot.75.000608.
12. Golenishchev-Kutuzov V.A., Golenishchev-Kutuzov A.V., Nesmelova I.M. Perspektivnye materialy i priemniki izlucheniya fotoelektroniki i fotoenergetiki: monografiya [Advanced materials and radiation detectors for photoelectronics and photovoltaic power engineering: monograph]. Kazan: Kazan state power engineering university Publ., 2013, 171 p. (In Russian).
13. Kurik M.V. Accuracy of the determination of absorption and reflection coefficients in absorbing media // Journal of Applied Spectroscopy, 1966, vol. 4, issue 3, pp.199-201. DOI: 10.1007/BF00612152.
14. Kaplunov I.A., Kolesnikov A.I., Talyzin I.V., Sedova L.V., Shaǐovich S.L. Measuring the light-attenuation coefficients of germanium and paratellurite crystals, Journal of Optical Technology, 2005, vol. 72, issue 7, pp. 564-571. DOI: 10.1364/JOT.72.000564.

⇐ Prevoius journal article | Content | Next journal article ⇒