Different schemes for obtaining fractal relief of nanosized platinum films
D.V. Ivanov1, A.S. Antonov1,2, E.M. Semenova1, A.I. Ivanova1, V.A. Anofriev1, N.Yu. Sdobnyakov1
1 Tver State University
2 Tver State Agricultural Academy
DOI: 10.26456/pcascnn/2021.13.156
Original article
Abstract: The morphology of the relief of nanosized platinum films on the mica surface is investigated using the scanning probe (in the atomic force mode) and tunneling microscopy. Platinum films were investigated immediately after their preparation in a magnetron sputtering facility, as well as after annealing in a muffle furnace in an air atmosphere. Annealing made it possible to establish the possible ranges of variation of the fractal dimension and the altitude parameters corresponding to degradation of the nanorelief. The values of the fractal dimension were obtained for films of different thicknesses using two alternative methods of investigation at different initial scales of samples: based on the data of an atomic force microscope – c D=2,17÷2,38 and a scanning tunneling microscope – c D=2,28÷2,50 depending on the sequence of deposition of layers and annealing of films. For comparison, experimental data of other authors are presented. The choice of the sequence of operations for magnetron sputtering and annealing, and external conditions makes it possible to formulate recommendations for development of the technology for «growing» structures with a given surface morphology.
Keywords: scanning probe microscopy, atomic force microscope mode, scanning tunneling microscopy, magnetron sputtering, annealing, nanorelief, roughness parameters, fractal dimension, platinum films
- Dmitry V. Ivanov – 4th year postgraduate student,General Physics Department, Tver State University
- Alexander S. Antonov – Ph. D., Researcher, General Physics Department, Tver State University, Senior Lecturer Tver State Agricultural Academy
- Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
- Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
- Vitalii A. Anofriev – 1st year graduate student, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
Reference:
Ivanov, D.V. Different schemes for obtaining fractal relief of nanosized platinum films / D.V. Ivanov, A.S. Antonov, E.M. Semenova, A.I. Ivanova, V.A. Anofriev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 156-165. DOI: 10.26456/pcascnn/2021.13.156. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
2. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
3. Slătineanu L., Dodun O., Coteaţă M., Beşliu I. Nanoreliefs obtained by various machining methods, Nanostructures and thin films for multifunctional applications. Cham, Springer International Publishing Switzerland, 2016, chapter 14, pp. 447-472. DOI: 10.1007/978-3-319-30198-3_14.
4. Ivanov G.S., Brylkin Yu.V. Fraktal'naya geometricheskaya model' mikropoverkhnosti [Fractal geometric microsurface model], Geometriya i grafika [Geometry & Graphics], 2016, vol. 4, no. 1, pp. 4-11. DOI: 10.12737/18053. (In Russian).
5. Brylkin Yu.V., Kusov A.L., Florov A.V. Testirovanie algoritma modelirovaniya rel'efa sherokhovatoj poverkhnosti na osnove teorii fraktalov [Testing a rough surface relief modeling algorithm based on fractal theory], Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta [Proceedings of the Kabardino-Balkarian State University], 2014, vol. IV, no. 5, pp. 86-89. (In Russian).
6. Serov I.N., Bel'skaya G.N., Margolin V.I. et al. Primenenie metoda magnetronnogo raspyleniya dlya polucheniya strukturirovannykh tonkikh plenok [The application of magnetron sputtering technique for production thin films with ordered structure], Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences: Physics], 2003, vol. 67, issue 4, pp. 575-578. (In Russian).
7. Serov I.N., Zhabrev V.A., Margolin V.I. Investigation into the influence of fractal-matrix structurizers on the formation and growth of nanostructures, Glass Physics and Chemistry, 2004, vol. 30, issue. 1, pp. 32-50. DOI: 10.1023/B:GPAC.0000016396.36549.ad.
8. Serov I.N., Luk'yanov G.N., Margolin V.I. et al. Poluchenie i issledovanie nanorazmernykh plenok medi s fraktal'noi strukturoi [Preparation and study of nanoscale films of copper with a fractal structure], Mikrosistemnaya tekhnika [Microsystem technology], 2004, no. 1, pp. 31-38. (In Russian).
9. Torkhov N.A., Novikov V.A. Fractal geometry of the surface potential in electrochemically deposited platinum and palladium films, Semiconductors, 2009, vol. 43, issue 8, pp. 1071-1077. DOI: 10.1134/S106378260908020X.
10. Gómez-Rodriguez J.M., Baró A.M., Vázquez L. et al. Fractal surfaces of gold and platinum electrodeposits: dimensionality determination by scanning tunneling microscopy,The Journal of Physical Chemistry, 1992, vol. 96, issue 1, pp. 347-350. DOI: 10.1021/j100180a064.
11. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Poluchenie nanorazmernykh plenok platiny, obladayushchikh fraktal'nymi svojstvami [Obtaining nanosized platinum films with fractal properties], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 73-88. DOI: 10.26456/pcascnn/2020.12.073. (In Russian).
12. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 15.08.2021).
13. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide]. Moscow: NT-MDT SI Publ., 2019, 582 p. (In Russian).
14. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net (accessed 15.09.2021).
15. Belko A.V., Nikitin A.V., Strekal' N.D., German A.E. Fractal structure of gold clusters formed under vacuum deposition on dielectric substrates, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2009, vol. 3, issue 3, pp. 338-342. DOI: 10.1134/S1027451009030021.
16. Sdobnyakov N.Yu., Zykov T.Yu., Bazulev A.N., Antonov A.S. Opredelenie fraktal'noi razmernosti ostrovkovykh plenok zolota na slyude [Determination of the fractal dimension of island films of gold on mica], Vestnik TvGU, seriya «Fizika» [Herald of Tver State University, series «Physics»], 2009, issue 6, pp. 112-119. (In Russian).
17. Trusov L.I., Kholmyanskij V.A. Ostrovkovye metallicheskie plenki [Island metal films]. Moscow: Metallurgiya Publ., 1973, 320 p. (In Russian).
18. Bembel A.G., Talyzin I.V., Samsonov V.M. Смачивание в твердом состоянии и динамика нанорельефа твердой поверхности [Solid state wetting and dynamics of solid surface nanorelief], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 83-92. DOI: 10.26456/pcascnn/2018.10.083. (In Russian).