Separation of particles in polydisperse nanosuspension in the laser radiation field
V.I. Ivanov, S.A. Pyachin
Far Eastern State Transport University
DOI: 10.26456/pcascnn/2021.13.146
Original article
Abstract: On the basis of a stationary solution of a diffusion equation separation of nanoparticles in a transparent polydisperse aqueous suspension with different types of size distributions was studied under the action of the light pressure arising in the laser radiation field with the intensity of0,5—500 W/cm2. It was found that particles with a radius of more than 100 nm will mainly be precipitated at the bottom of the cell, and the concentration of smaller nanoparticles in the entire volume of the suspension will remain unchanged. In the case of a symmetrical initial distribution of nanoparticles size, the effect of a light beam with high intensity on the suspension leads to a violation of the symmetry of the distribution function curve, as well as a shift of the maximum to the region of smaller particle sizes on the irradiated surface. If the initial size distribution is asymmetric, the initial single-mode particle size distribution is transformed into a two-mode one. This technique can be used to isolate nanoparticles of certain sizes depending on the power density of the radiation.
Keywords: laser radiation, polydisperse medium, nanoparticles, deposition, separation
- Valery I. Ivanov – Dr. Sc., Professor, Head of the Physics and Theoretical Mechanics Department, Far Eastern State Transport University
- Sergey A. Pyachin – Dr. Sc., Docent, Professor, Physics and Theoretical Mechanics Department, Far Eastern State Transport University
Reference:
Ivanov, V.I. Separation of particles in polydisperse nanosuspension in the laser radiation field / V.I. Ivanov, S.A. Pyachin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2021. — I. 13. — P. 146-155. DOI: 10.26456/pcascnn/2021.13.146. (In Russian).
Full article (in Russian): download PDF file
References:
1. Poole C.P., Owens F.J. (Jr.) Introduction to nanotechnology. Hoboken, New Jersey, John Wiley & Sons, Inc., 2003. XII, 388 p.
2. Evstrapov A.A. Fizicheskie metody upravleniya dvizheniem i razdeleniem mikrochastits v zhidkikh sredakh. I. Dielektroforez, fotoforez, optoforez, opticheskij pintset [Physical methods of motion control and separation of microparticles in liquid media. I. Dielectrophoresis, photophoresis, optophoresis, optical tweezers], Nauchnoe priborostroenie [Scientific Instrumentation], 2005, vol. 15, no. 1, pp. 3-20. (In Russian).
3. Sokolovskii G.S., Losev S.N., Soboleva K.K. et al. Manipulation of microparticles using Bessel beams from semiconductor lasers, Technical Physics Letters, 2014, vol. 40, issue 6, pp. 475-478. DOI: 10.1134/S1063785014060133.
4. Nieminen T. A., du Preez-Wilkinson N., Stilgoe A.B. et al. Optical tweezers: theory and modelling, Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, vol. 146, pp. 59-80. DOI: 10.1016/j.jqsrt.2014.04.003.
5. Afanas’ev A.A., Gaida L.S., Matuk E.V., Svistun A.Ch. Dvizheniye serebryanykh nanochastits v zhidkosti s razlichnoy vyazkostyu pod deystviyem sil svetovogo davleniya [The movement of silver nanoparticles in liquid with various viscosity under the influence of forces of light pressure], Problemy fiziki. matematiki i tekhniki [Problems of Physics, Mathematics and Technics], 2016, no. 4(29), pp. 7-12. (In Russian).
6. Polimeno P., Magazzù A., Iatì M.A. et al. Optical tweezers and their application, Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, vol. 218, pp. 131-150. DOI: 10.1016/j.jqsrt.2018.07.013.
7. Yang Y., Ren Y.X., Chen M. Optical trapping with structured light: a review, Advanced Photonics, 2021, vol. 3, no. 3, pp. 034001-1-034001-40. DOI: 10.1117/1.AP.3.3.034001.
8. Minin I.V., Minin O.V. Opticheskie i akusticheskie lovushki [Optical and acoustic traps], Vestnik SGUGiT [Vestnik of SSUGT], 2017, vol. 22, no. 3, pp. 194-214. (In Russian).
9. Ivanova G.D., Myagotin A.V., Ivanov V.I. Svetoindutsirovannaya linza v prozrachnoj plotnoj nanosuspenzii [Light induced lens in a transparent dense nanosuspension], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 590-595. DOI: 10.26456/pcascnn/2019.11.590. (In Russian).
10. Ivanova G., Khe V., Ivanov V. Light-induced sedimentation in nanoliquids, Journal of Physics: Conference Series, 2018, vol. 1115, issue 3, art. no. 032086, 4 p. DOI: 10.1088/1742-6596/1115/3/032086.
11. Ivanov V.I., Ivanova G.D., Krylov V.I., Khe V.K. Osazhdenie nanochastits pod dejstviem sil svetovogo davleniya v zhidkikh sredakh [Sedimentation of nanoparticles under the action of light pressure forces in liquid media], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 286-290. DOI: 10.26456/pcascnn/2018.10.286. (In Russian).
12. Khe V.K., Ivanov V.I., Ivanova G.D., Chigrin P.G. Sedimentation of particles by the light pressure in nanosuspension, 23rd International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics: proceedings, 3-7 July 2017, Irkutsk, Russian Federation. Washington, Society of Photo-Optical Instrumentation Engineers, 2017, vol. 10466, art. no. 104664K, 7 p. DOI: 10.1117/12.2288774.