Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Changing the properties of diffusion-hardening solders hardened with titanium, zirconium, and hafnium powders

V.M. Skachkov, L.A. Pasechnik, I.S. Medyankina, N.A. Sabirzyanov

The Institute of Solid State Chemistry of the Ural Branch of RAS

DOI: 10.26456/pcascnn/2023.15.831

Original article

Abstract: This article presents the results of a study of the properties of three diffusion-hardening solders based on low-melting gallium alloys and copper-tin alloy powder after the introduction of inert metal powders of titanium, zirconium, and hafnium in an amount of 5% each, which is an additive of 15 wt.%. After heat treatment at low temperatures (125°C) in within 24 hours, and after hightemperature treatment (600°C) for 6 hours, the microhardness of the obtained composite diffusionhardening solders was evaluated. Relatively long-term heat treatment at low temperatures does not lead the composition to achieve equilibrium states, possible physico-chemical transformations do not fully occur in them, which shows an increase in the hardness of samples after high-temperature treatment. X-ray phase analysis has determined the phases formed as a result of diffusion hardening, forming micro- and nanoscale intermetallic compounds, and the metal tin released in the form of nanoscale secretions in the intergrain space. Metal filler powders, inert at low temperature to exposure, but well wetted with gallium at high temperatures, interact with it, forming nanoscale intermetallic compounds, additionally strengthening composite solders.

Keywords: composite diffusion-hardening solders, metal powder, titanium, zirconium, hafnium, properties, microhardness, differential thermal analysis

  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Liliya A. Pasechnik – Ph. D., Leading Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Irina S. Medyankina – Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS
  • Nail A. Sabirzyanov – Dr. Sc., Chief Scientific Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Skachkov, V.M. Changing the properties of diffusion-hardening solders hardened with titanium, zirconium, and hafnium powders / V.M. Skachkov, L.A. Pasechnik, I.S. Medyankina, N.A. Sabirzyanov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 831-839. DOI: 10.26456/pcascnn/2023.15.831. (In Russian).

Full article (in Russian): download PDF file

References:

1. Astakhov N.V., Bashkirov A.V., Makarov O.Yu., Pirogov A.A., Demikhova A.S. Problemy povysheniya nadezhnosti i kachestva radioelektronnykh sredstv i priborov pri ispol'zovanii bessvintsovykh pripoev [Problems of improving the reliability and quality of radio electronic products and instruments when using lead-free solders], Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 2021, vol. 17, no. 2, pp. 48-53. DOI: 10.36622/VSTU.2021.17.2.008. (In Russian).
2. Novoseltseva M.M. Sotsial'no-ekonomicheskie meropriyatiya v promyshlennosti, napravlennye na okhranu truda [Social and economic measures in industry aimed at labor protection], Zametki Uchenogo, 2020, no. 8, pp. 238-245. (In Russian).
3. Muktepavel V.O., Karpov V.M., Strukov I.G. Tekhnologicheskie sposoby sozdaniya neraz"yomnykh soedinenij raznorodnykh materialov [Technological methods for creating permanent joints of dissimilar materials], Morskie intellektual'nye tekhnologii [Marine intellectual technologies], 2022. no. 4, part 2, pp. 117-122. DOI: 10.37220/MIT.2022.58.4.015. (In Russian).
4. Yatsenko S.P., Hayak V.G. Kompozitsionnye pripoi na osnove legkoplavkikh splavov [Composite solders based on low-melting alloys]. Ekaterinburg, Ural Branch of RAS Publ., 1997, 186 p. (In Russian).
5. Martinsen K., Hu, S.J. Carlson B.E. Joining of dissimilar materials, CIRP Annals, 2015, vol. 64, issue 2, pp. 679-699. DOI: 10.1016/j.cirp.2015.05.006.
6. Yatsenko S.Р., Pasechnik L.A., Skachkov V.M., Rubinshtein G.V. Gallii: Gallij: Tekhnologii polucheniya i primenenie zhidkikh splavov: Monografiya [Technologies for the production and application of liquid alloys]. Moscow, RAS Publ., 2020, 344 p. (In Russian).
7. Ershov V.M. Termicheskoe rasshirenie intermetallidnykh faz sistemy med'-gallij [Thermal expansion of intermetallic phases of the copper-gallium system], Sbornik nauchnich trudov Donbasskogo gosudarstvennogo tehnicheskogo universiteta [Collection of scientific papers of the Donbass State Technical University], 2008, issue 27, pp. 242-247. (In Russian).
8. Skachkov V.M., Shevyrev N.A., Pasechnik L.A., Yatsenko S.P. Kompozitsionnyj pripoj na osnove poroshkov metallov i gallievogo splava [Composite solders on the basis of metal powders and gallium alloy], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 455-464. DOI: 10.26456/pcascnn/2017.9.455. (In Russian).
9. Skachkov V.M., Pasechnik L.A., Skachkova O.V., Yatsenko S.P. Diffuzionno-tverdeyushchij pripoj na osnove splava gallij-indij-olovo i poroshka metallov PMOSF5, uprochnennyj titanom [Diffuzionno-hardening solders based alloy gallium-indium-tin and powder of metal PCTSP5 reinforced with titanium], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 600-608. DOI: 10.26456/pcascnn/2018.10.600. (In Russian).
10. Yatsenko S.Р. Gallij. Vzaimodejstvie s metallami [Gallium. Interaction with metals]. Moscow, Nauka Publ., 1974, 220 p. (In Russian).
11. Poroshok splava med'-olovo sfericheskoi formy. Tekhnicheskie usloviya [Spherical copper-tin alloy powder. Specifications]. Specifications RF, no. 48-1318-03-89. Мoscow, 1989. 9 p. (In Russian).
12. Titan gubchatyj. Tekhnicheskie usloviya: GOST 17746-96 [Sponge titanium. Specifications]. State Standard RF, no. 17746-96. Minsk, 1996. 6 p. (In Russian).
13. Poroshok tsirkoniya kal'tsietermicheskij. Tekhnicheskie usloviya [Zirconium powder is calcietermic. Specifications]. Specifications RF, no. 48-4-234-84. Мoscow, 1984. 81 p. (In Russian).
14. Poroshok gafnievyj. Tekhnicheskie usloviya [Hafnium powder. Specifications]. Specifications RF, no. 48-4-176-85. Мoscow, 1986. 35 p. (In Russian).
15. Shubin A.B., Ignatieva E.V., Ignatiev I.E. Poluchenie metallicheskikh kompozitsij iz smesej med'-soderzhashchego poroshka i gallievogo rasplava: opredelenie optimal'nykh parametrov vibroobrabotki [Producing of the metallic compositions from the mixes of copper-containing powders and gallium melts: determination of optimum vibration treatment parameters], Butlerovskie soobtscheniy [Butlerov Communications], 2016, vol. 45, no. 3, pp. 116-121. (In Russian).
16. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.05.2023).
17. Speyer R.F. Thermal Analysis of Materials. New York, Marcel Dekker Publ., 1994, 298 p.

⇐ Prevoius journal article | Content | Next journal article ⇒