Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Properties of diffusion-hardening composite solder modified with vanadium powder

V.M. Skachkov

The Institute of Solid State Chemistry of the Ural Branch of RAS

DOI: 10.26456/pcascnn/2023.15.823

Original article

Abstract: The article considers the effect of vanadium metal powder on the properties of diffusionhardening solder  basedon a low-melting gallium-tin alloy and a solid component consisting of a copper-tin alloy powder. After the introduction of vanadium metal powder in the amount of 5, 10 and 15 wt.%, solder samples were subjected to heat treatment at two different temperatures – 125 and 600°C. The microhardness and thermal stability of composite diffusion-hardening solders are evaluated. It is shown that heat treatment at higher temperatures promotes the transition of solder to an equilibrium state, which leads to an increase in hardness due to the formation and distribution of intermetallic compounds, including nanoscale ones. The phases of vanadium intermetallides formed as a result of interaction with gallium were determined by X-ray phase analysis. Metallic vanadium is wetted by gallium, has limited solubility, and increases solder hardness due to precipitation strengthening.

Keywords: composite diffusion-hardening solders, metal powder, properties, microhardness, differential thermal analysis, vanadium

  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, The Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Skachkov, V.M. Properties of diffusion-hardening composite solder modified with vanadium powder / V.M. Skachkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 823-830. DOI: 10.26456/pcascnn/2023.15.823. (In Russian).

Full article (in Russian): download PDF file

References:

1. Polezhaeva N.I., Wolf V. A., Lamberg E R., Logachev N.I. Payal'naya pasta dlya tonkoplenochnoj tekhnologii [Soldering paste for thin film technology], Reshetnevskie chteniya [Proceedings of the Reshetnev Readings], Krasnoyarsk, November, 10-12, 2021. – Krasnoyarsk, Reshetnev Siberian State University of Science and Technology Publ., 2021. pp. 666-667. (In Russian).
2. Novoseltseva M.M. Sotsial'no-ekonomicheskie meropriyatiya v promyshlennosti, napravlennye na okhranu truda [Social and economic measures in industry aimed at labor protection], Zametki Uchenogo, 2020, no. 8, pp. 238-245. (In Russian).
3. Yatsenko S.Р., Pasechnik L.A., Skachkov V.M., Rubinshtein G.V. Gallii: Gallij: Tekhnologii polucheniya i primenenie zhidkikh splavov: Monografiya [Technologies for the production and application of liquid alloys]. Moscow, RAS Publ., 2020, 344 p. (In Russian).
4. Yatsenko S.P., Hayak V.G. Kompozitsionnye pripoi na osnove legkoplavkikh splavov [Composite solders based on low-melting alloys]. Ekaterinburg, Ural Branch of RAS Publ., 1997, 186 p. (In Russian).
5. Goyda E.Yu., Ignatiev I.E., Shubin A.B. O mikrotverdosti kompozita Ga-Cu-Sn, poluchennogo mul'tivibratsionnoj obrabotkoj ego zhidkotverdoj smesi [On the microhardness of the composite Ga-Cu-Sn obtained multivibration the processing idkategori mixture], Butlerovskie Soobshcheniya [Butlerov Communications], 2018, vol. 56, no. 10, pp. 112-117. (In Russian).
6. Nagy E., Kristaly F., Gyenes A., Gacsi Z. Investigation of intermetallic compounds in Sn-Cu-Ni lead-free solders, Archives of Metallurgy and Materials, 2015, vol. 60, issue 2b, pp. 1511-1515. DOI: 10.1515/amm-2015-0163.
7. Sokolov E.G., Ozolin A.V., Arefieva S.A. The effect of tungsten nanoparticles on the hardness of sintered SnCu-Co-W alloys, Materials Science Forum, 2020, vol. 992, pp. 511-516. DOI: 10.4028/www.scientific.net/MSF.992.511.
8. Skachkov V.M., Shevyrev N.A., Pasechnik L.A., Yatsenko S.P. Kompozitsionnyj pripoj na osnove poroshkov metallov i gallievogo splava [Composite solders on the basis of metal powders and gallium alloy], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 455-464. DOI: 10.26456/pcascnn/2017.9.455. (In Russian).
9. Skachkov V.M., Pasechnik L.A., Skachkova O.V., Yatsenko S.P. Diffuzionno-tverdeyushchij pripoj na osnove splava gallij-indij-olovo i poroshka metallov PMOSF5, uprochnennyj titanom [Diffuzionno-hardening solders based alloy gallium-indium-tin and powder of metal PCTSP5 reinforced with titanium], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 600-608. DOI: 10.26456/pcascnn/2018.10.600. (In Russian).
10. Skachkov V.M., Pasechnik L.A., Yatsenko S.P. Izuchenie svojstv diffuzionno-tverdeyushchego kompozitsionnogo pripoya GaSn-CuSn-Mo [Study of properties of diffusion-hardening composite solder GaSnCuSn-Mo], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 722-730. DOI: 10.26456/pcascnn/2020.12.722. (In Russian).
11. Skachkov V.M., Pasechnik L.A., Medyankina I.S., Sabirzyanov N.A. Svojstva diffuzionno-tverdeyushchego kompozitsionnogo pripoya modifitsirovannogo poroshkami vol'frama [Properties of diffusion-hardening composite solder modified with tungsten powders], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 707-716. DOI: 10.26456/pcascnn/2022.14.707. (In Russian).
12. Novozhilov I.S., Cherednikov V.A., Polevoj E.V., Rubczov V.Yu., Ulegin K.A. Vliyanie mikrolegirovaniya i goryachej deformatsii na kinetiku raspada austenita rel'sovoj stali [Micro-alloying effect and hot deformation on austenite decay kinetics of rail steel]. Kalibrovochnoe byuro [Roll pass design bureau], 2022, no. 20, pp. 11-22. (In Russian).
13. Ruziev U.N., Guro V.P., Rasulova S.N., Sharipov Kh.T., Ibragimova M.A., Ernazarov U.R. Legirovanie vanadiem i reniem tverdykh splavov [Alloying hard metals with vanadium and rhenium]. Universum: khimiya i biologiya [Universum: chemistry and biology], 2022, no. 10 (100), 5 p. DOI: 10.32743/UniChem.2022.100.10.14303. (In Russian).
14. Shevchenko V.G., Eselevich D.A., Baklanov M.N., Sidorov V.E., Rusanov B.A. The study of density of alloys of the Al–V system for optimizing the modes of producing powders for 3d printing, Rasplavy [Melts], 2021, no. 5. pp. 460-468. DOI: 10.31857/S0235010621050133. (In Russian).
15. Poroshok splava med'-olovo sfericheskoi formy. Tekhnicheskie usloviya [Spherical copper-tin alloy powder. Specifications]. Specifications RF, no. 48-1318-03-89. Мoscow, 1989. 9 p. (In Russian).
16. Vanadij elektroliticheskij [Electrolytic vanadium]. Specifications RF, no. 48-4-335-86. Moscow, 1987. 19 p. (In Russian).
17. Shubin A.B., Ignatieva E.V., Ignatiev I.E. Poluchenie metallicheskikh kompozitsij iz smesej med'-soderzhashchego poroshka i gallievogo rasplava: opredelenie optimal'nykh parametrov vibroobrabotki [Producing of the metallic compositions from the mixes of copper-containing powders and gallium melts: determination of optimum vibration treatment parameters], Butlerovskie soobtscheniy [Butlerov Communications], 2016, vol. 45, no. 3, pp. 116-121. (In Russian).
18. Speyer R.F. Thermal Analysis of Materials, New York, Marcel Dekker Publ., 1994, 298 p.
19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.05.2023).
20. Pasechnik L.A., Skachkov V.M., Yacenko S.P. Intermetallicheskie soedineniya v zhidkom gallii [Intermetallic compounds in liquid gallium]. Materialy V Rossijskoj nauchno-tekhnicheskoj konferentsii «Fizicheskie svojstva metallov i splavov» [Materials of the V Russian Scientific and Technical Conference «Physical Properties of Metals and Alloys»], Yekaterinburg, November, 3-4, 2009. Екатеринбург Yekaterinburg, Ural State Technical University - UPI named after B.N. Yeltsin Publ., 2009. pp. 205-210. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒