Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Micromorphology and fractal parameters of growth surfaces of single crystals of paratellurite

S.V. Molchanov, S.A. Tretyakov, I.A. Kaplunov, A.M. Ivanov, V.S. Stepanov, V.P. Tsvetkov, I.V. Tsvetkov, S.A. Mikheev

Tver State University

DOI: 10.26456/pcascnn/2023.15.787

Original article

Abstract: This paper presents studies of the influence of growth conditions of paratellurite single crystals on the side surface of grown boules and the possibility of assessing the quality of crystals based on the values and dynamics of the roughness parameters and fractal parameters of juvenile surfaces. Two single crystals were grown under similar technological conditions and differing from each other in structural quality. Their lateral surfaces were studied using the optical interference profilometer NanoMap 1000WLI employing SPIP and Gwyddion softwares. As a result, roughness parameters of profiles, and fractal parameters of crystal surfaces along the growth direction were obtained,. It was concluded that under conditions corresponding to the formation of stable flows in the melt, the values of the surface roughness over the entire length of the crystal is less than 5 μm, and the fractal energy parameter can be used as a marker of the quality and homogeneity of crystals.

Keywords: paratellurite single crystals, untreated crystal surface, roughness parameters, fractal parameters

  • Sergey V. Molchanov – Junior Researcher, Management of Scientific Research, Tver State University
  • Sergey A. Tretyakov – Ph. D., Docent, Applied Physics Department, Tver State University
  • Ivan A. Kaplunov – Dr. Sc., Professor, Head of the Applied Physics Department, Tver State University
  • Alexey M. Ivanov – Lead Programmer, Applied Physics Department, Tver State University
  • Valeriy S. Stepanov – Junior Researcher, Management of Scientific Research, Tver State University
  • Victor P. Tsvetkov – Dr. Sc., Head of the Department of General Mathematics and Mathematical Physics, Tver State University
  • Ilya V. Tsvetkov – Dr. Sc., Professor, Department of Enterprise Economics and Management, Tver State University
  • Sergey A. Mikheev – Ph. D., Docent, Department of General Mathematics and Mathematical Physics, Tver State University

Reference:

Molchanov, S.V. Micromorphology and fractal parameters of growth surfaces of single crystals of paratellurite / S.V. Molchanov, S.A. Tretyakov, I.A. Kaplunov, A.M. Ivanov, V.S. Stepanov, V.P. Tsvetkov, I.V. Tsvetkov, S.A. Mikheev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 787-798. DOI: 10.26456/pcascnn/2023.15.787. (In Russian).

Full article (in Russian): download PDF file

References:

1. Veber P., Mangin J. TeO2 liquid phase: Viscosity measurements and evaluation of the thermal conductivity from crystal growth experiments, Materials Research Bulletin, 2008, vol. 43, issue 11, pp. 3066-3073. DOI: 10.1016/j.materresbull.2007.11.018.
2. Arnaboldi C., Brofferio C., Bryant A. et al. Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay, Journal of Crystal Growth, 2010, vol. 312, issue 20, pp. 2999-3008. DOI: 10.1016/j.jcrysgro.2010.06.034.
3. Kokh A.E., Shevchenko V.S., Vlezko V.A., Kokh K.A. Growth of TeO2 single crystals by the low temperature gradient Czochralski method with nonuniform heating, Journal of Crystal Growth, 2013, vol. 384, pp. 1-4. DOI: 10.1016/j.jcrysgro.2013.08.027.
4. Kolesnikov A.I., Kaplunov I.A., Sokolova E.I. et al. Indices of faces developing on Czochralski-grown paratellurite crystals, Crystallography Reports, 2019, vol. 64, issue 1, pp. 168-173. DOI: 10.1134/S1063774519010115.
5. Lukasiewicz T., Majchrowski A. Czochralski growth of TeO2 single crystals under conditions of forced convection in the melt, Journal of Crystal Growth, 1992, vol. 116, issue 3-4, pp. 364-368. DOI: 10.1016/0022-0248(92)90645-Y.
6. Kolesnikov A.I. Vliyanie uslovij rosta na raspredelenie defektov v chistykh i legirovannykh monokristallakh paratellurita [Influence of growth conditions on the distribution of defects in pure and doped paratellurite single crystals], Cand. phys.-math. sci. diss.: 02.00.04, Tver, TSU Publ., 1996, 231 p. (In Russian).
7. Kaplunov I.A., Kolesnikov A.I., Ivanova A.I. et al. Surface micromorphology of germanium single crystal boules grown from melt, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, vol. 9, issue 3. pp. 630-635. DOI: 10.1134/S102745101503026X.
8. Prostomolotov A.I. Razrabotka i primenenie metodov modelirovaniya v tekhnologiyakh vyrashchivaniya monokristallov iz rasplava [Development and application of modeling methods in technologies for growing single crystals from a melt], Dr. phys.-math, sci. diss.: 05.27.06, Moscow, Institute of Mechanics RAS, 2004, 362 p. (In Russian).
9. Vinokurov V.V. Chislennoe modelirovanie gidrodinamiki rasplava i teploobmena v metode Chokhral'skogo [Numerical modeling of melt hydrodynamics and heat transfer using the Czochralski method], Cand. phys.-math, sci. diss.: 12.12.12, Novosibirsk, Institute of Thermophysics named after. S.S. Kutateladze SB RAS, 2012, 252 p. (In Russian).
10. SPIP User's Guide. Available at: www.url: http://www.imagemet.com/WebHelp6/Default.htm. (accessed 22.08.2023).
11. Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software. Available at: www.url: http://gwyddion.net. (accessed 22.08.2023).
12. Paramonova E.K., Mikheev S.A., Tsvetkov V.P., Tsvetkov I.V. Fractal thermodynamics of the states of instantaneous heart rhythm, Russian Journal of Mathematical Physics, 2021, vol. 28, issue 2, pp. 251-256. DOI: 10.1134/S1061920821020096.
13. Meysurova A.F., Tsvetkov V.P., Tsvetkov I.V., Notov A.A. Analiz fraktal'nykh parametrov list'yev snyti obyknovennoy (Aegopodium podagraria) v rekreatsionnykh zonakh goroda Tveri metodami mul'tifraktal'noy termodinamiki [Analysis of fractal parameters of the leaves of the common honey (Aegopodium podagraria) in recreational areas of the city of Tver using multifractal thermodynamics methods], Vestnik TvGU. Seriya Biologiya i ekologiya [Bulletin of Tver State University. Series: Biology and Ecology], 2022, no. 1(65), pp. 180-193. DOI: 10.26456/vtbio245 (In Russian).
14. Paramonova E.K., Kudinov A.N., Mikheev S.A. et al. Fractal thermodynamics, big data and its 3D visualization, Proceedings of the 9th International Conference «Distributed Computing and Grid Technologies in Science and Education» (GRID'2021), Dubna, Russia, July 5-9, 2021, Dubna, Joint Institute for Nuclear Research, 2021, pp. 38-42.
15. Tél T. Fractals, multifractals, and thermodynamics an introductory review, Zeitschrift für Naturforschung A, 1988, vol. 43, no. 12, pp. 1154-1174 DOI: 10.1515/zna-1988-1221.
16. Maslov V.P. Two-fluid picture of supercritical phenomena, Theoretical and Mathematical Physics, 2014, vol. 180, issue 3, pp. 1096-1129. DOI: 10.1007/s11232-014-0202-x.
17. Tsvetkov V.P., Mikheev S.A., Tsvetkov I.V. et al. Modeling the multifractal dynamics of COVID-19 pandemic, Chaos, Solitons & Fractals, 2022, vol. 161, art. no. 112301, 9 p. DOI: 10.1016/j.chaos.2022.112301.

⇐ Prevoius journal article | Content | Next journal article ⇒