Production of barium-calcium-strontium niobate ceramics with optimal properties for practical application
I.L. Kislova, O.V. Malyshkina, P.A. Ivanova, A.I. Ivanova
Tver State University
DOI: 10.26456/pcascnn/2023.15.736
Original article
Abstract: In this work, we obtained at various sintering temperatures and studied the ceramic samples of a 3-component system of barium niobate – calcium – strontium (Ca0,28Ba0,72)0,25(Sr0,61Ba0,39)0,75Nb2O6 (CSBN25) which is a nanostructured solid solution. The effect of sintering temperature on the structure and dielectric properties of CSBN25 ceramics was studied. It has been established that the CSBN25 sample obtained at a sintering temperature of 1300°С has the optimal ferroelectric properties. For this sample, the pore size does not exceed 10 – 100 nm, while for samples sintered at other temperatures, pores can reach 10 microns. Using examples of CSBN25 ceramics, we have also shown a direct relationship between the uniformity of the grain structure and their packing density with the dielectric properties of the samples: the maximum density and the value of the permittivity have the samples that have a dense, uniform grain structure not only on the surface, but also in the bulk of the samples. Increasing the sintering temperature of CSBN25 ceramics to1350°С leads to the appearance of an amorphous state in the sample bulk and, as a result, to a decrease in the dielectric constant.
Keywords: piezoelectric ceramics, barium – calcium – strontium niobate, lead-free materials, grain structure, permittivity
- Inna L. Kislova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
- Olga V. Malyshkina – Dr. Sc., Professor, Full Professor, Department of Computer Security and Mathematical Control Methods, Tver State University
- Polina A. Ivanova – 3rd year student, Faculty of Physics and Technology, Tver State University
- Alexandra I. Ivanova – Ph. D., Docent, Applied Physic Department, Tver State University
Reference:
Kislova, I.L. Production of barium-calcium-strontium niobate ceramics with optimal properties for practical application / I.L. Kislova, O.V. Malyshkina, P.A. Ivanova, A.I. Ivanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 736-745. DOI: 10.26456/pcascnn/2023.15.736. (In Russian).
Full article (in Russian): download PDF file
References:
1. Choi S.B., Han Y.M. Piezoelectric actuators. Control applications of smart materials. Baco Raton, London,New York, CRC Press, 2010, 276 p.
2. Schwartz M. Smart materials. Baco Raton, CRC Press, 2008, 554 p. DOI: 10.1201/9781420043730.
3. Uchino K. Advanced piezoelectric materials. Science and technology. Oxford, Cambridge, Philadelphia, New Delhi, Woodhead Publishing, 2010, 688 p.
4. Golovnin V.А., Kaplunov I.А., Ped'ko B.B., Malyshkina O.V., Movchikova А.А. Fizicheskie osnovy, metody issledovaniya i prakticheskoe primenenie p'ezomaterialov [Physical foundations, research methods and practical application of piezomaterials]. – Moscow, TEKHNOSFERА Publ., 2013. – 272 p. (In Russian).
5. Malič B., Benčan A., Tadej R., Marija K. Lead-free piezoelectrics based on alkaline niobates: Synthesis, sintering and microstructure, Acta Chimica Slovenica, 2008, vol. 55, issue 4, pp. 719-726.
6. Zhao J.-Q., Liu Y.-G., Fang M.-H. et al. Preparation, characterisation, and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics, Journal of Electroceramics, 2014, vol. 32, issue 2-3, pp. 255-259. DOI: 10.1007/s10832-013-9883-z.
7. Bai W., Chen D., Huang Y. et al. Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoceramics, Journal of Alloys and Compounds, 2016, vol. 667, pp. 6-17. DOI: 10.1016/j.jallcom.2016.01.144.
8. Ji W.-J., Chen Y.-B., Zhang S.-T. et al. Microstructure and electric properties of lead-free 0.8Bi1/2Na1/2TiO3–0.2Bi1/2K1/2TiO3 ceramics, Ceramics International, 2012, vol. 38, issue 2, pp. 1683-1686. DOI: 10.1016/j.ceramint.2011.09.061.
9. Malyshkina O.V., Shishkov G.S., Martyanov A.A., Ivanova A.I. Effect of sintering temperature on dielectric properties of barium titanate ceramics and composite, Modern Electronic Materials, 2020, vol. 6, issue 4, pp. 141-146. DOI: 10.3897/j.moem.6.4.65576.
10. Hollenstein E., Damjanovic D., Setter N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics, Journal of the European Ceramic Society, 2007, vol. 27, issue 13-15, pp. 4093-4097. DOI: 10.1016/j.jeurceramsoc.2007.02.100.
11. Lau S.T., Cheng C.H., Choy S.H. et al. Lead-free ceramics for pyroelectric applications, Journal of Applied Physics, 2008, vol. 103, issue 10, pp. 104105-104105. DOI: 10.1063/1.2927252.
12. Es’kov A.V., Anokhin A.S., Bui M.T. et al. Investigation of the electrocaloric effect in strontium barium niobate (SBN) ceramics with rare-earth dopants, Journal of Physics: Conference Series, 2018, vol. 1038, art. no. 012115, 5 p. DOI: 10.1088/1742-6596/1038/1/012115.
13. Chen H., Guo S., Yao C. et al. Induced anisotropic behavior and enhanced electrical properties on hotpressed strontium barium niobate ceramics, Ceramics International, 2017, vol. 43, issue 4, pp. 3610-3615. DOI: 10.1016/j.ceramint.2016.11.198.
14. Ke S., Fan H., Huang H. et al. Dielectric, ferroelectric properties, and grain growth of Ca�Ba1−�Nb2O6 ceramics with tungsten-bronzes structure, Journal of Applied Physics, 2008, vol. 104, issue 2, pp. 024101-1-024101-6. DOI: 10.1063/1.2956615.
15. Yao Y., Guo K., Bi D. et al. Pyroelectric properties of calcium doped strontium barium niobate ceramics Sr0.65−xCaxBa0.35Nb2O6, Journal of Materials Science: Materials in Electronics, 2018, vol. 29, issue 20, pp. 17777-17785 DOI: 10.1007/s10854-018-9885-3.
16. Li B., Wang D.,·Chen G. et al. Effect of K:Ba ratio on energy storage properties of strontium barium potassium niobate glass ceramics, Journal of Materials Science: Materials in Electronics, 2019, vol. 30, issue 21, pp. 19262-19269. DOI: 10.1007/s10854-019-02285-x.
17. Ainger W.F., Bickley W.P., Smith G.V. The search for new ferroelectrics with the tungsten bronze structure, Proceedings of the British Ceramic Society, 1970, vol. 18. pp. 221-237.
18. Lukasiewicz T., Swirkowicz M.A., Dec J. et al. Strontium–barium niobate single crystals, growth and ferroelectric properties, Journal of Crystal Growth, 2008, vol. 310, issue 7, pp. 1464-1469. DOI: 10.1016/j.jcrysgro.2007.11.233.
19. Malyshkina O.V., Lisitsin V.S., Dec J., Łukasiewicz T. Pyroelectric and dielectric properties of calcium barium niobate single crystals, Physics of the Solid State, 2014, vol. 56, issue 9, pp. 1824-1827. DOI: 10.1134/S1063783414090194.
20. Shashkov M.S., Malyshkina O.V., Barabanova E.V., Dec J. Pyroelectric properties of the calcium-strontiumbarium niobate single crystals, Ferroelectrics, 2016, vol. 499, issue 1, pp. 23-27. DOI: 10.1080/00150193.2016.1171648.
21. Muehlberg M., Burianek M., Joschko B. et al. Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN), Journal of Crystal Growth, 2008, vol. 310, issue 7-9, pp. 2288-2294. DOI: 10.1016/j.jcrysgro.2007.12.023.
22. Chen H., Guo S., Dong X. et al. CaxSr0.3−xBa0.7Nb2O6 lead-free pyroelectric ceramics with high depoling temperature, Journal of Alloys and Compounds, 2017, vol. 695, pp. 2723-2729. DOI: 10.1016/j.jallcom.2016.11.192.
23. Malyshkina O., Ivanova A., Malyshkin Y. et al. Effect of Ca, Sr and Ba distribution on the relaxor properties of CSBN single crystals, Ferroelectrics, 2017, vol. 511, issue 1, pp. 76-81. DOI: 10.1080/00150193.2017.1334183.
24. Guseva O.S., Malyshkina O.V., Ivanova A.I., Boitsova K.N. Osobennosti struktury keramiki na osnove niobata bariya - kal'tsiya [Barium and calcium niobate ceramics: specific features of their structure], Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 85-95. DOI: 10.26456/pcascnn/2021.13.085. (In Russian).