Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Amorphous-crystalline boron-containing coatings formed by the ion-plasma

Yu.F. Ivanov1, A.A. Klopotov2, V.V. Shugurov1, I.I. Azhazha1, E.A. Petrikova1, O.S. Tolkachev1, A.V. Nikonenko3

1 Institute of High Current Electronics SB RAS
2 Tomsk State University of Architecture and Building
3 Tomsk State University of Control Systems and Radioelectronics

DOI: 10.26456/pcascnn/2023.15.725

Original article

Abstract: Using the method of high-frequency ion-plasma sputtering (magnetron highfrequency deposition under conditions of ion-plasma assisted using a gas (argon) plasma generator «PINK») on the surface of a high-entropy CoFeCrMnNi alloy of non-equiatomic composition. Boron-containing coatings of the elemental composition Al – Mg – B and Mg – Ti – B with a thickness of 3 μm are formed. Using transmission electron diffraction microscopy, it was found that the coatings are amorphous-crystalline, i.e. contain nanosized 1.5-2 nm islands of the crystalline phase located in an amorphous matrix. It is shown that the coating deposition is accompanied by the formation in the substrate layer (high-entropy alloy) adjacent to the coating of a nanocrystalline structure with a crystallite size of 25-40 nm. At the boundaries of the crystallites, particles of iron boride of the FeB and Fe3B compositions are revealed, which indicate the penetration of boron into the substrate. The particle size of iron boride is 5-8 nm.

Keywords: ion-plasma method, high-entropy alloy, film/substrate systems, boron-containing coating, structure, mechanical and tribological properties

  • Yury F. Ivanov – Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Anatoly A. Klopotov – Dr. Sc., Professor, Department of Applied Mechanics and Materials Science, Tomsk State University of Architecture and Building
  • Vladimir V. Shugurov – Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Ivan I. Azhazha – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Elizaveta A. Petrikova – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Oleg S. Tolkachev – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics SB RAS
  • Alisa V. Nikonenko – Ph. D., Associate Professor of the Department of Physics, Tomsk State University of Control Systems and Radioelectronics

Reference:

Ivanov, Yu.F. Amorphous-crystalline boron-containing coatings formed by the ion-plasma / Yu.F. Ivanov, A.A. Klopotov, V.V. Shugurov, I.I. Azhazha, E.A. Petrikova, O.S. Tolkachev, A.V. Nikonenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 725-735. DOI: 10.26456/pcascnn/2023.15.725. (In Russian).

Full article (in Russian): download PDF file

References:

1. Balusamy T., Sankara Narayanan T.S.N., Ravichandran K. et al. Pack boronizing of AISI H11 tool steel: role of surface mechanical attrition treatment, Vacuum, 2013, vol. 97, pp. 36-43. DOI: 10.1016/j.vacuum.2013.04.006.
2. Erdogan A. Boriding temperature effect on micro-abrasion wear resistance of borided tool steel, Journal of Tribology, 2019, vol. 141, issue 12, art. № 121702, 7 p. DOI: 10.1115/1.4044859.
3. Gok M.S., Erdogan A., Oge M. et al. Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures, Surface and Coatings Technology, 2017, vol 328, pp. 54-62. DOI: https://doi.org/10.1016/j.surfcoat.2017.08.008.
4. Subramanian C., Suri A.K. Development of boron based neutron absorber materials, Metals and Materials Processing, 2004, vol. 16, issue 1, pp. 39-52.
5. Fu X., Ji Z., Lin W. et al. The advancement of neutron shielding materials for the storage of spent nuclear fuel, Science and Technology of Nuclear Installations, 2021, vol. 2021, art. № 5541047, 13 p. DOI: DOI: 10.1155/2021/5541047.
6. Ivanov A.A., Smirnov A.N., Taskaev S.Yu. et al. Accelerator-based neutron source for boron neutron capture therapy, Physics-Uspekhi, 2022, vol. 65, issue 8, pp. 834-851. DOI: 10.3367/UFNe.2021.02.038940.
7. Liu D., Zhao J., Li Y. et al. Effects of boron content on microstructure and wear properties of FeCoCrNiBx high-entropy alloy coating by laser cladding, Applied Sciences, 2020, vol. 10, art. no. 49, 11 p. DOI: 10.3390/app10010049.
8. Lindner T., Löbel M., Sattler B., Lampke T. Surface hardening of FCC phase high-entropy alloy system by powder-pack boriding, Surface and Coatings Technology, 2019, vol. 371, pp. 389-394. DOI: 10.1016/j.surfcoat.2018.10.017.
9. Nakajo H., Nishimoto A. Boronizing of CocrFeMnNi high-entropy alloys using spark plasma sintering, Journal of Manufacturing and Materials Processing, 2022, vol. 6, issue 2, art. № 29, 9 p. DOI: 10.3390/jmmp6020029.
10. Cengiz S., Thuvander M. The effect of Hf addition on the boronizing and siliciding behavior of CoCrFeNi high entropy alloys, Materials, 2022, vol. 15, issue 6, art. no 2282, 17 p. DOI: 10.3390/ma15062282.
11. Hou J., Fan J., Yang H. et al. Deformation behavior and plastic instability of boronized Al0.25CocrFeNi highentropy alloys, International Journal of Minerals, Metallurgy and Materials, 2020, vol. 27, issue 10, pp. 1363-1670. DOI: 10.1007/s12613-020-1967-6.
12. Seol J.B., Wung B.J., Li Z.M. et al. Boron doped ultrastrong and ductile high-entropy alloys, Acta Materialia, 2018, vol. 151, pp. 366-376. DOI: 10.1016/j.actamat.2018.04.004.
13. Gromov V.E., Ivanov Yu.F., Osintsev K.A. et al. High-entropy alloys: structure and properties. Moscow, RuScience, 2022, 204 p.
14. Devyatkov V.N., Ivanov Yu.F., Krysina O.V. et al. Equipment and processes of vacuum electron-ion plasma surface engineering, Vacuum, 2017, vol. 143, pp. 464-472. DOI: 10.1016/j.vacuum.2017.04.016.
15. Nikitin P.Yu., Matveev A.E., Zhukov I.A. Energy-effective AlMgB14 production by self-propagating hightemperature synthesis (SHS) using the chemical furnace as a source of heat energy, Ceramics International, 2021, vol. 47, issue 15, pp. 21698-21704. DOI: 10.1016/j.ceramint.2021.04.183.
16. Nikitin, P. Experimental and theoretical study of ultra-hard AlMgB14–TiB2 composites: structure, hardness and self-Lubricity, Materials, 2022, vol. 15, issue 23, art. no. 8450, 12 p. DOI: 10.3390/ma15238450.
17. Witusiewicz V.T., Boundary A.A., Hecht U. et al. The Al–B–Nb–Ti system V. Thermodynamic description of the ternary system Al–B–Ti , Journal of Alloys and Compounds, 2009, vol. 474, issue 1-2, pp. 86-104. DOI: 10.1016/j.jallcom.2008.06.128.
18. Raghavan V. Al-B-Mg (aluminum-boron-magnesium), Journal of Phase Equilibria and Diffusion, 2010, vol. 31, issue 3, pp. 272-273. DOI: 10.1007/s11669-010-9675-y.
19. Higashi I., Kobayashi M., Okada S. et al. Boron-rich crystals in Al–M–B (M=Li, Be, Mg) systems grown from high-temperature aluminium solutions, Journal of Crystal Growth, 1993, vol. 128, issue 1-4, part 2, pp. 1113-1119. . DOI: 10.1016/S0022-0248(07)80108-4.
20. Kubaschewski, O. The Al-B-Co System (aluminum-boron-cobalt), Bulletin of Alloy Phase Diagrams, 1989. vol. 10, issue 5. pp. 533-536. DOI: 10.1007/BF02882410.
21. Jeitschko, W. The crystal structure of Fe2AlB2, Acta Crystallographica, 1969, vol. 25, issue 1, pp. 163-165. DOI: 10.1107/S0567740869001944.
22. Chisholm M.F., Duscher G., Pang L.X. Kumar K.S. Fe16Al14B2 phase in Fe–Al alloys, Philosophical Magazine A, 2000, vol. 80, issue 11, pp. 2737-2745. DOI: 10.1080/01418610008216502.
23. Chaban N.F., Kuzma Yu.B. Troynyye sistemy Cr–Al–B i Mn–Al–B [The Ternary Systems Cr–Al–B and Mn–Al–B ], Izvestiya Akademii Nauk SSSR, Seriya Neorganicheskie Materialy, [Proceedings of the USSR Academy of Sciences, Inorganic Materials], 1973, vol. 9, pp. 1908-1911. (In Russian).
24. Kuz'ma Yu.B., Kripyakevich P.I., Chaban N.F. Kristallicheskaya struktura Cr3AlB4 [Crystal structure Cr3AlB4], Materialy Akademii nauk Ukrainy, Seriya A [Materials of the Academy of Sciences of Ukraine. Series A], 1972, no. 12, pp. 1118-1121. (In Russian).
25. Becher H.J., Krogmann K., Peisker E. Über das ternäre Borid Mn2AlB4, Zeitschrift für Anorganische und Allgemeine Chemie, 1966, vol. 344, issue 3-4 pp. 140-147. DOI: 10.1002/zaac.19663440304 (In German).
26. Chaban N.F., Kuzma, Yu.B. Izotermicheskie secheniia (Co, Ni) – (Al, Si) [Isothermal cross sections in the systems (Co, Ni) – (Al,Si) ], Izvestiya Akademii Nauk SSSR, Seriya Neorganicheskie Materialy [Proceedings of the USSR Academy of Sciences. Inorganic Materials] 1973, vol. 9, pp. 2136-2140. (In Russian).
27. Higashi I., Takahashi Y., Atoda T. Crystal growth of borides and carbides of transition metals from molten aluminium solutions, Journal of Crystal Growth, 1976, vol. 33, issue 2, pp. 207-211. DOI: 10.1016/0022-0248(76)90044-0.
28. Chaban N.F., Kuzma Yu.B. Izotermicheskiye poperechnyye secheniya v sistemakh (Co, Ni) – (Al, Si) – B [Isothermal cross sections in the systems (Co, Ni) – (Al, Si) – B ], Izvestiya akademii nauk SSSR neorganicheskie materialy [Proceedings of the USSR Academy of Sciences, Seriya Inorganic Materials], 1973, vol. 9, pp. 2136-2140. (In Russian).
29. Post B., Glaser F.W., Moskowitz D. Transition metal diborides, Acta Metallurgica, 1954, vol. 2, issue 1, pp. 20-25. DOI: 10.1016/0001-6160(54)90090-5.
30. Ottavi L., Saint-Yours C., Valignant N. et al. phase equilibria and solidification of Fe–Ti–B alloys in the region close to Fe–TiB2, Zeitschrift für Metallkunde, 1992, vol. 83, issue 2, pp. 80-83. DOI: 10.1515/ijmr-1992-830203.
31. Klopotov A.A. Ivanov Y.F., Petrikova E.A. et al. Strukturno-fazovye sostoyaniya poverkhnostnogo sloya splava Al-Si posle elektronno-ionno-plazmennoj obrabotki [Structural-phase states of surface layer of Al-Si alloy after electron-ion-plasma treatment], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2014, issue 6, pp.162-170. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒